Подпишись и читай
самые интересные
статьи первым!

Применение экспоненциального распределения. Показательный закон распределения

Определение. Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью

где l - положительное число.

Найдем закон распределения.

Графики функции распределения и плотности распределения:

f(x) F(x)

Найдем математическое ожидание случайной величины, подчиненной показательному распределению.

Результат получен с использованием того факта, что

Для нахождения дисперсии найдем величину М(Х 2).

Дважды интегрируя по частям, аналогично рассмотренному случаю, получим:

Тогда

Итого: Видно, что в случае показательного распределения математическое ожидание и среднее квадратическое отклонение равны.

Также легко определить и вероятность попадания случайной величины, подчиненной показательному закону распределения, в заданный интервал.

Показательное распределение широко используется в теории надежности .

Допустим , некоторое устройство начинает работать в момент времени t 0 =0 , а через какое - то время t происходит отказ устройства.

Обозначим Т непрерывную случайную величину - длительность безотказной работы устройства.

Таким образом , функция распределения F(t) = P(T определяет вероятность отказа за время длительностью t .

Вероятность противоположного события (безотказная работа в течение времени t ) равна R(t) = P(T>t) = 1 - F(t).

Определение. Функцией надежности R(t) называют функцию, определяющую вероятность безотказной работы устройства в течение времени t .

Часто на практике длительность безотказной работы подчиняется показательному закону распределению.

Вообще говоря , если рассматривать новое устройство, то вероятность отказа в начале его функционирования будет больше, затем количество отказов снизится и будет некоторое время иметь практически одно и то же значение. Затем (когда устройство выработает свой ресурс) количество отказов будет возрастать.

Другими словами , можно сказать, что функционирование устройства на протяжении всего существования (в смысле количества отказов) можно описать комбинацией двух показательных законов (в начале и конце функционирования) и равномерного закона распределения.

Функция надежности для какого- либо устройства при показательном законе распределения равна:

Данное соотношение называют показательным законом надежности .

Важным свойством , позволяющим значительно упростить решение задач теории надежности, является то, что вероятность безотказной работы устройства на интервале времени t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t .

Таким образом , безотказная работа устройства зависит только от интенсивности отказов l и не зависит от безотказной работы устройства в прошлом.


Так как подобным свойством обладает только показательный закон распределения, то этот факт позволяет определить, является ли закон распределения случайной величины показательным или нет.

2.8 Распределение «Хи-квадрат»

Пусть X i (i=1,2,…,n) - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице. Тогда сумма квадратов этих величин

распределена по закону («Хи-квадрат») с k=n степенями свободы; если же эти величины связаны одним линейным соотношением, например , то число степеней свободы k=n-1.

Плотность этого распределения

где -Гамма-функция; в частности,

Отсюда видно , что распределение «Хи-квадрат» определяется одним параметром - числом степеней свободы k. С увеличением числа степеней свободы распределение медленно приближается к нормальному.

2.9 Распределение Стьюдента

Пусть Z -нормальная случайная величина, причем M(Z)=0, s(Z)=1, а V- независимая от Z величина, которая распределена по закону с k степенями свободы. Тогда величина

имеет распределение, которое называют t- распределением или распределением Стьюдента, k степенями свободы. Итак отношение нормированной нормальной величины к квадратному корню из независимой случайной величины, распределенной по закону

«Хи-квадрат» с k степенями свободы , деленной на k, деленной на k распределено по закону Стьюдента с k степенями свободы. . С увеличением числа степеней свободы распределение медленно приближается к нормальному.

2.9 Нормальный закон распределения

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать , что параметры и , входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.

Найдем функцию распределения F(x) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1 ) Функция определена на всей числовой оси.

2 ) При всех х функция распределения принимает только положительные значения.

3 ) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4 ) Найдем экстремум функции.

Т.к. при y’ > 0 при x < m и y’ < 0 при x > m , то в точке х = т функция имеет максимум, равный .

5 ) Функция является симметричной относительно прямой х = а , т.к. разность

(х - а ) входит в функцию плотности распределения в квадрате.

6 ) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.


где λ – постоянная положительная величина.

Из выражения (3.1), следует, чтопоказательное распределение определяется одним параметром λ.

Эта особенность показательного распределения указывает на его преимущество по сравнению с распределениями , зависящими от боль­шего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближенные значе­ния) разумеется, проще оценить один параметр, чем два или три и т. д . Примером непрерывной случайной вели­чины, распределенной по показательному закону , может служить время между появлениями двух последователь­ных событий простейшего потока.

Найдем функцию распределения показательного закона .

Итак

Графики плотности и функции распределения показа­тельного закона изображены на рис. 3.1.


Учитывая, что получим:

Значения функции можно находить по таблице.

Числовые характеристики показательного распределения

Пусть непрерывная случайная величина Χ рас­пределена по показательному закону

Найдем математическое ожидание , используя формулу её вычисления для непрерывной случайной величины:


Следовательно:

Найдем среднее квадратическое отклонение , для чего извлечем квадратный корень из дисперсии:

Сравнивая (3.4), (3.5) и (3.6), видно, что

т. е. математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Показательное распределение широко применяетсяв различных приложениях финансовых и технических задач, например, в теории надежности.



4. Распределение «хи-квадрат» и распределение Стьюдента.

4.1 Распределение «хи-квадрат» (- распределение)

Пусть Χ i (ί = 1, 2, ..., n)-нормальные незави­симые случайные величины , причем математическое ожи­даниекаждой из нихравно нулю , а среднее квадратическое отклонение - единице .

Тогдасумма квадратов этих величин

распределена по закону с степенями свободы , если же эти величины связаны одним линейным соотношением, например , то число степеней свободы

Распределение хи-квадрат нашло широкое применение в математической статистике.

Плотность этого распределения


где - гамма-функция, в частности .

Отсюда видно, чтораспределение хи-квадрат опре­деляется одним параметром - числом степеней свободы k.

С увеличением числа степеней свободыраспределение хи-квадрат медленно приближается к нормальному.

Хи-квадрат распределение получается, если в законе распределения Эрланга принять λ = ½ и k = n /2 – 1.

Математическое ожидание и дисперсия случайной величины, имеющей хи-квадрат распределение, определяются простыми формулами, которые приведем без вывода:

Из формулы следует, что при хи-квадрат распределение совпадает с экспоненциальным распределением при λ = ½ .

Интегральная функция распределения при хи-квадрат распределенииопределяетсячерез специальные неполные табулированные гамма-функции

На рис.4.1. приведены графики плотности вероятности и функции распределения случайной величины, имеющей хи-квадрат распределениепри n = 4, 6, 10.

Рис.4.1. а )Графики плотности вероятности при хи-квадрат распределении


Рис.4.1. б)Графики функции распределения при хи-квадрат распределении

4.2 Распределение Стьюдента

Пусть Z – нормальная случайная величина, причём

а V – независимая от Z величина, которая распределена по закону хи-квадрат с k степенями свободы.Тогда величина:


имеет распределение, которое называют t -распределением или распределением Стьюдента (псевдоним английского статистика В. Госсета),

с k = n - 1 степенями свободы (n - объём статистической выборки при решении задач статистки).

Итак , отношение нормированной нормальной величинык квадратному корню из независимой случайной вели­чины, распределенной по закону «хи квадрат» с k степе­нями свободы , деленной на k, распределено по закону Стьюдента с k степенями свободы.

Плотность распределения Стьюдента:

Показательным называют распределение непрерывной случайной величины Х которое описывается следующей дифференциальной функцией

Экспоненциальное распределение для непрерывных случайных величин является аналогом распределения Пуассона для дискретных случайных величин и имеет следующий вид.

вероятность попадания случайной величины Х на интервал (α;β)

Следует отметить, что время безотказной работы удовлетворяется именно показательному закону, а поэтому это понятие часто используется в понятии надежности.

Нормальный закон распределения (закон Гаусса)

Нормальным называется распределение случайной величины Х если ф-ция плотности распределения

Полученное выражение через элементарные функции не может быть выражено, такая функция так называемый интеграл вероятности для которой составлены таблицы, чаще всего в качестве такой функции используют

Часто по условию задачи необходимо определить вероятность попадания случайной величины Х на участок симметричный математическому ожиданию.

Правило трех сигм это правило часто используется для подтверждения или отбрасывания гипотезы о нормальном распределении случайной величины.

Мат. статистика

Выборочная сумма:

.

Выборочное среднее:

.

Выборочная дисперсия:

, где т i – частота.

Выборочное СКО:

.

Эмпирическая функция распределения:

F * (x)=P(X

F * (x)= .

Точечные оценки:

Несмещенная оценка генеральной средней (мат.ожидания ):

, х i – варианта выборки, m i – частота варианты х i , - объем выборки.

Смещенная оценка генеральной дисперсии – выборочная дисперсия:

, так как

.

Несмещенной оценкой генеральной дисперсии служит «исправленная дисперсия»:

. При п<30.

Коэффициент вариации:

.

Центральный момент к -го порядка:

.

Начальный момент к -го порядка:

.

Ассиметрия : , т 3 =

Эксцесс : , где т 4 =

Групповая средняя : .

Общая средняя: , где .

Общая дисперсия: .

Интервальные оценки:

Доверительный интервал для мат.ожидания а нормально распределенного количества признака Х :

.

Критерий согласия Пирсона:

Если число наблюдений очень велико, то закон распределения СВ не зависит от того, какому закону подчинена генеральная совокупность. Он приближается к распределению с к степенями свободы, а сам критерий называется критерием согласия Пирсона:

, где к – количество интервалов сгруппированного ряда, т i >0,05n .

Количество степеней свободы : r=k-p-1 , где к – количество интервалов, р – количество параметров закона.



Уровень значимости α :

α=0,05 и α=0,01.

Если , то Н 0 принимается , т.е. предполагаемый закон распределения отвечает эмпирическим данным. При этом мы ошибаемся в 5-ти случаях из 100, принимая возможно ошибочную гипотезу (ошибка 2-го рода).

Если , то Н 0 отвергается , т.е. предполагаемый закон не отвечает эмпирическим данным. При этом мы ошибаемся в 1-ом случае из 100, отбрасывая правильную гипотезу (ошибка 1-го рода).

Если , то имеем неопределенность и можно использовать др. критерии.


Корреляция

- сумма частот в i -ом столбце;

- сумма частот в к -ой строке;

- число пар (х i ; y k) .

Условное среднее : .

Теоретические уравнения линий регрессии :

.

Расчет числовых характеристик:

Показатель тесноты корреляционной связи – эмпирическое корреляционное отношение:

, где .

.

Свойства:

1. 0≤η≤1 .

2. если η =1, то у(х) – связь функциональная.

3. η =0, то связи нет.

4. η≥ .

5. если η = , то имеет место точная линейная корреляционная зависимость.

6. чем ближе η к 0, тем корреляционная связь слабее, чем ближе к 1, тем корреляционная связь сильнее и в пределе она превращается в функциональную зависимость.

Коэффициент корреляции:

.

Проверка значимости параметров корреляционной зависимости:

1. Проверка существенности линейной корреляционной связи (значимости регрессии) .

При больших объемах выборки коэф.корреляции подчиняется нормальному закону. При этом .

2. Проверка значимости регрессии :

.

Если τ р >2,58, то с уверенностью 99% можно утверждать, что корреляционная зависимость существенна (регрессия значима). Т.е. корреляционная связь существует не только в выборке, но и во всей генеральной совокупности.

τ р <1,96, то с уверенностью 95% можно утверждать, что корреляционная зависимость не явл. существенной, т.е. она характерна только для данной выборки и может не существовать в генеральной совокупности.



1,96<τ р < 2,58 – несущественная корреляционная зависимость.

3. Проверка линейности выбранной модели (проверка адекватности):

.

Р=99% (α=0,01): t=2,58

Р=95% (α=0,05): t=1,96

Если величина η у/х удовлетворяет этому неравенству, то выбранная модель адекватна, она соответствует эмпирическим данным.

Критерий Фишера:

, п – число наблюдений, к – число интервалов по Х.

При уровнях значимости:

α=0,05 и α=0,01: F 0,05 (k-1;n-1); F 0,01 (k-1;n-k).

Если F y / x

Проверка значимости регрессии:

, по табл. F 0,01 (1;n-2), F 0,05 (1;n-2).

Если F R >F 0,01 , то регрессия значима, если F R

Адекватность модели по Фишеру:

.

F 0,01 (k-2;n-k), F 0,05 (k-2;n-k).

Если F A >F 0,01 , то модель неадекватна, если F A

Критерий Романовского:

, где r – число ступеней свободы. Если ρ<3 , то расхождение между теоретическими и эмпирическими распределениями нужно считать незначительными.

Критерий согласованности Калмагорова:

- наибольшая по абсолютной величине разность между накопленными частотами эмпирического и теоретического распределения.

к – количество интервалов.

По таблице находим соответствующее значение вероятности Р(λ). Если Р(λ)<0,05, то расхождение между распределениями существенно, оно не может быть вызвано случайными причинами. Чем ближе эта вероятность к 1, тем лучше теоретическое распределение согласовывается с эмпирическим.

В исходных факторах, мы свяжем факторы 1 - 7 с факторами из раздела VI. 3 в том порядке, в котором они записаны, т. е. фактор 1 - это усечение, фактор 2 - симметрия и т. д. Затем мы свяжем уровни + и - факторов в табл. 4 с двумя уровнями факторов VI. 3 случайным образом. Этот случайный порядок был достигнут с помощью таблицы случайных чисел и сравнением этих чисел с 1/2. Результаты этой процедуры показаны в табл. 5. Совмещение табл. 4 и 5 дает план в исходных факторах, приведенный в табл. 6, где Л1, (i = 1,. .., 4) обозначают неизвестные случайные величины , имеющие экспоненциальное распределение с параметром Ьг - Ь. В качестве примера рассмотрим комбинацию 1 в табл. 6. Факторы 1 и 2 находятся на уровне + в табл. 4. Следовательно, из табл. 5 мы должны взять усеченное, асимметричное распределение с поднятыми хвостами. В табл. 1 мы видим, что это распределение - экспоненциальное распределение случайной величины х. Фактор 6 находится на уровне  

В нашем случае для технологических изделий объективные причины не позволяют пользоваться этими законами распределения . Во-первых, условием получения нормального закона являются совместные действия множества случайных факторов , ни один из которых не является доминирующим. Этому не соответствуют условия эксплуатации и выбраковки изделий технологического назначения, где обязательно фигурируют доминирующие факторы. Во-вторых, для экспоненциального закона обязательны условия ординарности, стационарности и последействия, которые зачастую не выполняются для этих изделий. В частности, поток отказов их нельзя считать стационарным вследствие меняющегося во времени вероятностного режима его.  

Такая информация отражает сложившиеся условия производственных процессов и поэтому является выборкой из генеральной совокупности . На основании закона больших чисел можно утверждать, что если генеральная совокупность подчиняется определенному закону распределения , то и выборка из этой совокупности при достаточно большом ее объеме будет подчиняться этому закону. Чаще всего этот закон неизвестен, и определение его вызывает значительные трудности. В таких случаях предпочтение отдается хорошо известным законам распределения , чаще всего-экспоненциальному и нормальному.  

Под словом случайно будем понимать, что вероятность прибытия на АЗС одного автомобиля за любой малый промежуток времени , начинающийся в произвольный момент времени / и имеющий длину т, с точностью до пренебрежимо малых величин пропорциональна т с некоторым коэффициентом пропорциональности X > 0. Величину К можно интерпретировать как среднее число автомобилей, появляющихся на станции за единицу времени, а обратную ей величину 1Л, - как среднее время появления одного автомобиля. Вероятность того, что за этот промежуток времени не прибудет ни одного автомобиля, считается приблизительно равной 1 - т, а вероятность прибытия двух или более автомобилей - величиной, пренебрежимо малой по сравнению со значением Ял. Из выдвинутых предположений можно получить следующие выводы. Во-первых, промежутки времени / между двумя последовательными прибытиями автомобилей удовлетворяют экспоненциальному распределению  

Потери, возникающие в результате работы средств автоматизации за этот промежуток, могут быть подсчитаны на основе использования теории надежности, согласно которой внезапные отказы определяются как выход системы из строя вследствие возникновения непредвиденных, внезапных концентраций внешних нагрузок и внутренних напряжений, превышающих расчетные. Если часть элементов и соединений изготовлена или отремонтирована некачественно, то они будут отказывать при более низких нагрузках. Поэтому отказы дефектных элементов распределяются экспоненциально (рассматривается пуассоновский характер распределения внезапных выходов из строя), со средней наработкой в несколько раз меньшей, чем у остальных элементов.  

Экспоненциальное распределение. Этому распределению, как правило, подчиняются наработки внезапных отказов (т. е. отказов вследствие скрытых дефектов технологии) и распределение времени между двумя последовательными отказами, если изделия работают в установившемся режиме .  

Рассмотрим случай, когда исследуемый параметр распределен по экспоненциальному закону.  

Я. Б. Шор дает следующую формулу для определения доверительного интервала для генеральной средней в случае распределения случайной величины по экспоненциальному закону  

Несмотря на кажущуюся необременительность условий, при которых получено последнее выражение, в теоретическом отношении для ряда интересных случаев они оказываются невыполнимыми. Это происходит, когда производная g (x) в точке х = v обращается в бесконечность. В частности, так обстоят дела с двусторонним экспоненциальным распределением, с которым мы уже встречались в примерах 2 и 3 из . В одном варианте построения оптимального  

В этой главе мы рассмотрим наиболее употребительные законы распределения случайных величин , а также основные параметры этих законов. Будут даны методы поиска функции распределения вероятности случайной величины в случае неинтегрируемой плотности вероятности , а также алгоритмы получения последовательностей случайных величин с произвольным законом распределения , что необходимо при моделировании случайных процессов . Особое внимание будет уделено обобщенному экспоненциальному распределению, которое наиболее пригодно при изучении ценообразования активов.  

Одним из важнейших распределений, встречающихся в статистике, является нормальное распределение (распределение Гаусса), относящееся к классу экспоненциальных. Плотность вероятности этого распределения  

Еще одним типом экспоненциального распределения, наряду с нормальным, является распределение Лапласа , плотность которого выражается формулой  

Обобщенное экспоненциальное распределение.  

Выше в этой главе были рассмотрены два вида экспоненциальных распределений Гаусса и Лапласа. У них много общего они симметричны, зависят от двух параметров (//, сг),  

В VI. 2 мы коротко опишем ММР и цель эксперимента, т. е. изучение чувствительности ММР к нарушению его предпосылок. В VI.3 мы подробно обсудим различные факторы, которые могут влиять на эту чувствительность. Ненормальность распределения мы определим как фактор 1. Этот фактор описывает возможность или невозможность для случайных величин стать меньше заданной константы (так называемый фактор усеченное распределения) асимметрию и хвосты распределения мы примем фактором 2. Комбинируя факторы 1 и 2, мы выберем четыре типа распределений (экспоненциальное, Эрланга, взвешенную разность двух случайных величин с экспоненциальным распределением и сумму разностей случайных величин с экспоненциальным распределением). Неоднородность дисперсий будет обозначена как фактор 3. Это означает, что дисперсия наилучшей генеральной совокупности (afki) может быть либо больше, либо меньше дисперсии конкурирующей худшей совокупности (при наименее благоприятной ситуации). Фактор 4 измеряет, сильно ли различаются или не различаются вовсе эти две дисперсии. Фактор 5 показывает, являются ли дисперсии худших генеральных совокупностей (в наименее благоприятной ситуации) равными или они все различны. Фактор 6 определяет число совокупностей (три или семь) фактор 7 определяет расстояние 8 = 6 между наилучшей и следующей за ней совокупностями в наименее благоприятной ситуации . Фактор Р, гарантирующий минимальное значение вероятности правильного выбора, рассматривается  

Такая информация является выборкой из генеральной, совокупности, имеющей определенный закон распределения . Чащевсе-го этот закон неизвестен и определение его вызывает зиждительные трудности. В таких случаях предпочтение отдается х >ошо известным законам распределения , чаще всего - экспоненциальному и нормальному.  

законов распределения . В частности, при b = 1 он превращается в экспоненциальный закон , при b = 2 - в закон Релея, при b - = 3,25 - близок к нормальному. Зто обстоятельство позволяет использовать один и тот математический аппарат при исследовании самых различных потоков отказов изделий. Кроме того, этот  

В ряде исследований утверждается, что для отказов технических изделий вследствие износа, усталости, коррозии и старения вполне удовлетворительным будет нормальный или логарифмически нормальный закон распределения , в случае же внезапных отказов, возникающих вследствие случ-айных перегрузок, аварий и т. д., подходит экспоненциальный закон распределения .  

Универсальность данного закона объясняется тем, что при различных значениях параметра b он приближается к ряду законов распределения . В частности, при Ь = он превращается в экспоненциальный закон , при 6=2 - в закон Релея, при Ь = = 3,25 - близок к нормальному.  

В данном примере мы рассмотрели самый простой случай пуассоновский входной поток , экспоненциальное время обслуживания , одна обслуживающая установка. На самом деле, в реальности, и распределения бывают значительно сложнее, и АЗС включают в себя большее число бензоколонок. Для того чтобы упорядочить классификацию систем массового обслуживания , американский математик Д. Кен-далл предложил удобную систему обозначений, широко распространившуюся к настоящему времени. Тип системы массового обслуживания Кендалл обозначил с помощью трех символов, первый из которых описывает тип входного потока , второй - тип вероятностного описания системы обслуживания , а третий - количество обслуживающих приборов. Символом М он обозначал пуассоновское распределение входного потока (с экспоненциальным распределением интервалов между заявками), этот же символ применялся и для экспоненциального распределения продолжительности обслуживания. Таким образом, описанная и изученная в этом параграфе система массового обслуживания имеет обозначение М/М/1. Система M/G/3, например, расшифровывается как система с пуассоновским входным потоком , общей (по-английски - general) функцией распределения времени обслуживания и тремя обслуживающими устройствами. Встречаются и другие обозначения D -детерминированное распределение интервалов между поступлением заявок или длительностей обслуживания, Е - распределение Эрланга порядка п и т. д.  

На основе изложенных здесь методов построения последовательностей случайных чисел с различными распределениями можно построить процедуры randl и rand2, использовавшиеся в программе на языке алгол для расчетов по модели автозаправочной станции . Если используемые случайные интервалы между автомобилями и продолжительности обслуживания имеют экспоненциальное распределение, то лучше использовать метод обратных функций , а если некоторое эмпирическое распределение, то - метод, основанный на запоминании дискретных значений в оперативной памяти ЭВМ.  

Перейдем к описанию времени обслуживания автомобиля. Поскольку водители берут разное количество бензина и различаются между собой по сноровке, то время обслуживания вряд ли можно считать постоянным. Пусть вероятность того, что обслуживание автомобиля, находящегося на заправке в любой момент t, будет завершено в малом интервале U, f + rJ, приблизительно равна JLIT, где и > 0. Вероятность того, что обслуживание за этот промежуток времени не закончится, считается приблизительно равной 1 - цт, а вероятность того, что будет закончено обслужи-. ванне двух и более автомобилей, - пренебрежимо малой величиной. Тогда

Отметим здесь основные понятия и формулы, связанные с показательным распределением непрерывной случайной величины $X$ не вдаваясь в подробности их вывода.

Определение 1

Показательным или экспоненциальным распределения непрерывной случайной величины $X$ называется распределение, плотность которого имеет вид:

Рисунок 1.

График плотности показательного распределения имеет вид (рис. 1):

Рисунок 2. График плотности показательного распределения.

Функция показательного распределения

Как нетрудно проверить, функция показательного распределения имеет вид:

Рисунок 3.

где $\gamma $ - положительная константа.

График функции показательного распределения имеет вид:

Рисунок 4. График функции показательного распределения.

Вероятность попадания случайной величины при показательном распределении

Вероятность попадания непрерывной случайной величины в интервал $(\alpha ,\beta)$ при показательном распределении вычисляется по следующей формуле:

Математическое ожидание : $M\left(X\right)=\frac{1}{\gamma }.$

Дисперсия : $D\left(X\right)=\frac{1}{{\gamma }^2}.$

Среднее квадратическое отклонение: $\sigma \left(X\right)=\frac{1}{\gamma }$.

Пример задачи на показательное распределение

Пример 1

Случайная величина $X$ подчиняется экспоненциальному закону распределения. На участке области определения $\left \

Включайся в дискуссию
Читайте также
Вязаные подарки ко дню святого валентина
Игольница-шкатулка ам ням - описание
Ёлка из бумаги в технике оригами: пошаговая инструкция Оригами елка пошаговая инструкция схема