Подпишись и читай
самые интересные
статьи первым!

Чёрная энергия и материя во вселенной. Темная энергия вселенной

Относится к «Теории мироздания»

Темная материя и темная энергия во Вселенной


В. А. Рубаков,
Институт ядерных исследований РАН, Москва, Россия

1. Введение

Естествознание сейчас находится в начале нового, необычайно интересного этапа своего развития. Он замечателен прежде всего тем, что наука о микромире - физика элементарных частиц - и наука о Вселенной - космология - становятся единой наукой о фундаментальных свойствах окружающего нас мира. Различными методами они отвечают на одни и те же вопросы: какой материей наполнена Вселенная сегодня? Какова была её эволюция в прошлом? Какие процессы, происходившие между элементарными частицами в ранней Вселенной, привели в конечном итоге к её современному состоянию? Если сравнительно недавно обсуждение такого рода вопросов останавливалось на уровне гипотез , то сегодня имеются многочисленные экспериментальные и наблюдательные данные, позволяющие получать количественные (!) ответы на эти вопросы. Это - еще одна особенность нынешнего этапа: космология за последние 10–15 лет стала точной наукой. Уже сегодня данные наблюдательной космологии имеют высокую точность; еще больше информации о современной и ранней Вселенной будет получено в ближайшие годы.

Полученные в последнее время космологические данные требуют кардинального дополнения современных представлений о структуре материи и о фундаментальных взаимодействиях элементарных частиц. Сегодня мы знаем всё или почти всё о тех «кирпичиках», из которых состоит обычное вещество - атомы, атомные ядра, входящие в состав ядер протоны и нейтроны, - и о том, как взаимодействуют между собой эти «кирпичики» на расстояниях вплоть до 1/1000 размера атомного ядра (рис. 1). Это знание получено в результате многолетних экспериментальных исследований, в основном на ускорителях, и теор етического осмысл ения этих экспериментов. Космологические же данные свидетельствуют о существовании новых типов частиц, ещё не открытых в земных условиях и составляющих «темную материю» во Вселенной. Скорее всего, речь идет о целом пласте новых явлений в физике микромира, и вполне возможно, что этот пласт явлений будет открыт в земных лабораториях в недалеком будущем.

Еще более удивительным результатом наблюдательной космологии стало указание на существование совершенно новой формы материи - «темной энерги и».

Каковы свойства темной материи и темной энерги и? Какие космологические данные свидетельствуют об их существовании? О чем оно говорит с точки зрения физики микромира? Каковы перспективы изучения темной материи и темной энерги и в земных условиях? Этим вопросам и посвящена предлагаемая Вашему вниманию лекция.

2. Расширяющаяся Вселенная

Имеется целый ряд фактов, говорящих о свойствах Вселенной сегодня и в относительно недалеком прошлом.

Вселенная в целом однородна : все области во Вселенной выглядят одинаково. Разумеется, это не относится к небольшим областям: есть области, где много звезд - это галактики; есть области, где много галактик, - это скопления галактик; есть и области, где галактик мало, - это гигантские пустоты. Но области размером 300 миллионов световых лет и больше выглядят все одинаково. Об этом однозначно свидетельствуют астрономические наблюдения, в результате которых составлена «карта» Вселенной до расстояний около 10 млрд световых лет от нас . Нужно сказать, что эта «карта» служит источником ценнейшей информации о современной Вселенной, поскольку она позволяет на количественном уровне определить, как именно распределено вещество во Вселенной.

На рис. 2 показан фрагмент этой карты , охватывающий относительно небольшой объем Вселенной. Видно, что во Вселенной имеются структуры довольно большого размера, но в целом галактики «разбросаны» в ней однородно.

Вселенная расширяется : галактики удаляются друг от друга. Пространство растягивается во все стороны, и чем дальше от нас находится та или иная галактика, тем быстрее она удаляется от нас. Сегодня темп этого расширения невелик: все расстояния увеличатся вдвое примерно за 15 млрд лет, однако раньше темп расширения был гораздо больше. Плотность вещества во Вселенной убывает с течением времени, и в будущем Вселенная будет всё более и более разреженной. Наоборот, раньше Вселенная была гораздо более плотной, чем сейчас. О расширении Вселенной прямо свидетельствует «покраснение» света, испущенного удаленными галактиками или яркими звездами: из-за общего растяжения пространства длина волны света увеличивается за то время, пока он летит к нам. Именно это явление было установлено Э. Хабблом в 1927 году и послужило наблюдательным доказательством расширения Вселенной, предсказанного за три года до этого Александром Фридманом.

Замечательно, что современные наблюдательные данные позволяют измерить не только темп расширения Вселенной в настоящее время, но проследить за темпом её расширения в прошлом. О результатах этих измерений и вытекающих из них далеко идущих выводах мы еще будем говорить. Здесь же скажем о следующем: сам факт расширения Вселенной, вместе с теор ией гравитации - общей теор ией относительности - свидетельствует о том, что в прошлом Вселенная была чрезвычайно плотной и чрезвычайно быстро расширялась. Если проследить эволюцию Вселенной назад в прошлое, используя известные законы физики, то мы придем к выводу, что эта эволюция началась с момента Большого Взрыва; в этот момент вещество во Вселенной было настолько плотным, а гравитационное взаимодействие настолько сильным, что известные законы физики были неприменимы. С тех пор прошло 14 млрд лет, это - возраст современной Вселенной.

Вселенная «теплая»: в ней имеется электромагнитное излучение, характеризуемое температурой Т = 2,725 градусов Кельвина (реликтовые фотоны, сегодня представляющие собой радиоволны). Разумеется, эта температура сегодня невелика (ниже температуры жидкого гелия), однако это было далеко не так в прошлом. В процессе расширения Вселенная остывает, так что на ранних стадиях её эволюции температура, как и плотность вещества, была гораздо выше, чем сегодня. В прошлом Вселенная была горячей, плотной и быстро расширяющейся.


Фотоснимок, изображенный на рис. 3 , привел к нескольким важным и неожиданным выводам. Во-первых, он позволил установить, что наше трехмерное пространство с хорошей степенью точности евклидово: сумма углов треугольника в нем равна 180 градусов даже для треугольников со сторонами, длины которых сравнимы с размером видимой части Вселенной, т. е. сравнимы с 14 млрд световых лет. Вообще говоря, общая теор ия относительности допускает, что пространство может быть не евклидовым, а искривленным; наблюдательные же данные свидетельствуют, что это не так (по крайней мере для нашей области Вселенной). Способ измерения «суммы углов треугольника» на космологических масштабах расстояний состоит в следующем. Можно надежно вычислить характерный пространственный размер областей, где температура отличается от средней: на момент перехода плазма-газ этот размер определяется возрастом Вселенной, т. е. пропорционален 300 тыс. световых лет. Наблюдаемый угловой размер этих областей зависит от геометрии трехмерного пространства, что и дает возможность установить, что эта геометрия - евклидова.

В случае евклидовой геометрии трехмерного пространства общая теор ия относительности однозначно связывает темп расширения Вселенной с суммарной плотностью всех форм энерги и , так же как в ньютоновской теор ии тяготения скорость обращения Земли вокруг Солнца определяется массой Солнца. Измеренный темп расширения соответствует полной плотности энерги и в современной Вселенной

В терминах плотности массы (поскольку энерги я связана с массой соотношением Е = 2 ) это число составляет

Если бы энерги я во Вселенной целиком определялась энерги ей покоя обычного вещества, то в среднем во Вселенной было бы 5 протонов в кубическом метре. Мы увидим, однако, что обычного вещества во Вселенной гораздо меньше.

Во-вторых, из фотоснимка рис. 3 можно установить, какова была величина (амплитуда) неоднородностей температуры и плотности в ранней Вселенной - она составляла 10 –4 –10 –5 от средних значений. Именно из этих неоднородностей плотности возникли галактики и скопления галактик: области с более высокой плотностью притягивали к себе окружающее вещество за счет гравитационных сил, становились еще более плотными и в конечном итоге образовывали галактики.

Поскольку начальные неоднородности плотности известны, процесс образования галактик можно рассчитать и результат сравнить с наблюдаемым распределением галактик во Вселенной. Этот расчет согласуется с наблюдениями, только если предположить, что помимо обычного вещества во Вселенной имеется другой тип вещества - темная материя , вклад которой в полную плотность энерги и сегодня составляет около 25%.

Другой этап эволюции Вселенной соответствует еще более ранним временам, от 1 до 200 секунд (!) с момента Большого Взрыва, когда температура Вселенной достигала миллиардов градусов. В это время во Вселенной происходили термоядерные реакции, аналогичные реакциям, протекающим в центре Солнца или в термоядерной бомбе. В результате этих реакций часть протонов связалась с нейтронами и образовала легкие ядра - ядра гелия, дейтерия и лития-7. Количество образовавшихся легких ядер можно рассчитать, при этом единственным неизвестным параметром является плотность числа протонов во Вселенной (последняя, разумеется, уменьшается за счет расширения Вселенной, но её значения в разные времена простым образом связаны между собой).

Сравнение этого расчета с наблюдаемым количеством легких элементов во Вселенной приведено на рис. 4 : линии представляют собой результаты теор етического расчета в зависимости от единственного параметра - плотности обычного вещества (барионов), а прямоугольники - наблюдательные данные. Замечательно, что имеется согласие для всех трех легких ядер (гелия-4, дейтерия и лития-7); согласие есть и с данными по реликтовому излучению (показаны вертикальной полосой на рис. 4, обозначенной СМВ - Cosmic Microwave Background). Это согласие свидетельствует о том, что общая теор ия относительности и известные законы ядерной физики правильно описывают Вселенную в возрасте 1–200 секунд, когда вещество в ней имело температуру миллиард градусов и выше. Для нас важно, что все эти данные приводят к выводу о том, что плотность массы обычного вещества в современной Вселенной составляет

т. е. обычное вещество вкладывает всего 5% в полную плотность энерги и во Вселенной.

4. Баланс энерги й в современной Вселенной

Итак, доля обычного вещества (протонов, атомных ядер, электронов) в суммарной энерги и в современной Вселенной составляет всего 5%. Помимо обычного вещества во Вселенной имеются и реликтовые нейтрино - около 300 нейтрино всех типов в кубическом сантиметре. Их вклад в полную энерги ю (массу) во Вселенной невелик, поскольку массы нейтрино малы, и составляет заведомо не более 3%. Оставшиеся 90–95% полной энерги и во Вселенной - «неизвестно что». Более того, это «неизвестно что» состоит из двух фракций - темной материи и темной энерги и, как изображено на рис. 5 .


При этом вещества в звездах ещё в 10 раз меньше; обычное вещество находится в основном в облаках газа.

5. Темная материя

Темная материя сродни обычному веществу в том смысл е, что она способна собираться в сгустки (размером, скажем, с галактику или скопление галактик) и участвует в гравитационных взаимодействиях так же, как обычное вещество. Скорее всего, она состоит из новых, не открытых еще в земных условиях частиц.


Помимо космологических данных, в пользу существования темной материи служат измерения гравитационного поля в скоплениях галактик и в галактиках. Имеется несколько способов измерения гравитационного поля в скоплениях галактик, один из которых - гравитационное линзирование, проиллюстрированное на рис. 6 .

Гравитационное поле скопления искривляет лучи света, испущенные галактикой, находящейся за скоплением, т. е. гравитационное поле действует как линза. При этом иногда появляются несколько образов этой удаленной галактики; на левой половине рис. 6 они имеют голубой цвет. Искривление света зависит от распределения массы в скоплении, независимо от того, какие частицы эту массу создают. Восстановленное таким образом распределение массы показано на правой половине рис. 6 голубым цветом; видно, что оно сильно отличается от распределения светящегося вещества. Измеренные подобным образом массы скоплений галактик согласуются с тем, что темная материя вкладывает около 25% в полную плотность энерги и во Вселенной. Напомним, что это же число получается из сравнения теор ии образования структур (галактик, скоплений) с наблюдениями.


Темная материя имеется и в галактиках. Это опять-таки следует из измерений гравитационного поля, теперь уже в галактиках и их окрестностях. Чем сильнее гравитационное поле, тем быстрее вращаются вокруг галактики звезды и облака газа, так что измерения скоростей вращения в зависимости от расстояния до центра галактики позволяют восстановить распределение массы в ней. Это проиллюстрировано на рис. 7 : по мере удаления от центра галактики скорости обращения не уменьшаются, что говорит о том, что в галактике, в том числе вдалеке от её светящейся части, имеется несветящаяся, темная материя. В нашей Галактике в окрестности Солнца масса темной материи примерно равна массе обычного вещества.

Что представляют из себя частицы темной материи? Ясно, что эти частицы не должны распадаться на другие, более легкие частицы, иначе бы они распались за время существования Вселенной. Сам этот факт свидетельствует о том, что в природе действует новый , не открытый пока закон сохранения , запрещающий этим частицам распадаться. Аналогия здесь с законом сохранения электрического заряда: электрон - это легчайшая частица с электрическим зарядом, и именно поэтому он не распадается на более легкие частицы (например, нейтрино и фотоны). Далее, частицы темной материи чрезвычайно слабо взаимодействуют с нашим веществом, иначе они были бы уже обнаружены в земных экспериментах. Дальше начинается область гипотез . Наиболее правдоподобной (но далеко не единственной!) представляется гипотез а о том, что частицы темной материи в 100–1000 раз тяжелее протона, и что их взаимодействие с обычным веществом по интенсивности сравнимо с взаимодействием нейтрино. Именно в рамках этой гипотез ы современная плотность темной материи находит простое объяснение: частицы темной материи интенсивно рождались и аннигилировали в очень ранней Вселенной при сверхвысоких температурах (порядка 10 15 градусов), и часть их дожила до наших дней. При указанных параметрах этих частиц их современное количество во Вселенной получается как раз такое, какое нужно.

Можно ли ожидать открытия частиц темной материи в недалеком будущем в земных условиях? Поскольку мы сегодня не знаем природу этих частиц, ответить на этот вопрос вполне однозначно нельзя. Тем не менее, перспектива представляется весьма оптимист ической.

Имеется несколько путей поиска частиц темной материи. Один из них связан с экспериментами на будущих ускорителях высокой энерги и - коллайдерах. Если частицы темной материи действительно тяжелее протона в 100–1000 раз, то они будут рождаться в столкновениях обычных частиц, разогнанных на коллайдерах до высоких энерги й (энерги й, достигнутых на существующих коллайдерах, для этого не хватает). Ближайшие перспективы здесь связаны со строящимся в международном центре ЦЕРН под Женевой Большим адронным коллайдером (LHC), на котором будут получены встречные пучки протонов с энерги ей 7x7 Тераэлектронвольт. Нужно сказать, что согласно популярным сегодня гипотез ам, частицы темной материи - это лишь один представитель нового семейства элементарных частиц, так что наряду с открытием частиц темной материи можно надеяться на обнаружение на ускорителях целого класса новых частиц и новых взаимодействий. Космология подсказывает, что известными сегодня «кирпичиками» мир элементарных частиц далеко не исчерпывается!

Другой путь состоит в регистрации частиц темной материи, которые летают вокруг нас. Их отнюдь не мало: при массе, равной 1000 масс протона, этих частиц здесь и сейчас должно быть 1000 штук в кубическом метре. Проблема в том, что они крайне слабо взаимодействуют с обычными частицами, вещество для них прозрачно. Тем не менее, частицы темной материи изредка сталкиваются с атомными ядрами, и эти столкновения можно надеяться зарегистрировать. Поиск в этом направлении


Наконец, еще один путь связан с регистрацией продуктов аннигиляции частиц темной материи между собой. Эти частицы должны скапливаться в центре Земли и в центре Солнца (вещество для них практически прозрачно, и они способны проваливаться внутрь Земли или Солнца). Там они аннигилируют друг с другом, и при этом образуются другие частицы, в том числе нейтрино. Эти нейтрино свободно проходят сквозь толщу Земли или Солнца, и могут быть зарегистрированы специальными установками - нейтринными телескопами. Один из таких нейтринных телескопов расположен в глубине озера Байкал (НТ-200 , рис. 8 ), другой (AMANDA) - глубоко во льду на Южном полюсе.

Как показано на рис. 9 , нейтрино, приходящее, например, из центра Солнца, может с малой вероятностью испытать взаимодействие в воде, в результате чего образуется заряженная частица (мюон), свет от которой и регистрируется. Поскольку взаимодействие нейтрино с веществом очень слабое, вероятность такого события мала, и требуются детект оры очень большого объема. Сейчас на Южном полюсе началось сооружение детект ора объемом 1 кубический километр.

Имеются и другие подходы к поиску частиц темной материи, например, поиск продуктов их аннигиляции в центральной области нашей Галактики. Какой из всех этих путей первым приведет к успеху, покажет время, но в любом случае открытие этих новых частиц и изучение их свойств станет важнейшим научным достижением. Эти частицы расскажут нам о свойствах Вселенной через 10 –9 с (одна миллиардная секунды!) после Большого Взрыва, когда температура Вселенной составляла 10 15 градусов, и частицы темной материи интенсивно взаимодействовали с космической плазмой.

6. Темная энерги я

Темная энерги я - гораздо более странная субстанция, чем темная материя. Начать с того, что она не собирается в сгустки, а равномерно «разлита» во Вселенной. В галактиках и скоплениях галактик её столько же, сколько вне их. Самое необычное то, что темная энерги я в определенном смысл е испытывает антигравитацию . Мы уже говорили, что современными астрономическими методами можно не только измерить нынешний темп расширения Вселенной, но и определить, как он изменялся со временем. Так вот, астрономические наблюдения свидетельствуют о том, что сегодня (и в недалеком прошлом) Вселенная расширяется с ускорением: темп расширения растет со временем. В этом смысл е и можно говорить об антигравитации: обычное гравитационное притяжение замедляло бы разбегание галактик, а в нашей Вселенной, получается, всё наоборот.

Такая картина, вообще говоря, не противоречит общей теор ии относительности, однако для этого темная энерги я должна обладать специальным свойством - отрицательным давлением. Это резко отличает её от обычных форм материи. Не будет преувеличением сказать, что природа темной энерги и - это главная загадка фундаментальной физики XXI века .

Один из кандидатов на роль темной энерги и - вакуум. Плотность энерги ии вакуума не изменяется при расширении Вселенной, а это и означает отрицательное давление вакуума . Другой кандидат - новое сверхслабое поле, пронизывающее всю Вселенную; для него употребляют термин «квинтэссенция». Есть и другие кандидаты, но в любом случае темная энерги я представляет собой что-то совершенно необычное.

Другой путь объяснения ускоренного расширения Вселенной состоит в том, чтобы предположить, что сами законы гравитации видоизменяются на космологических расстояниях и космологических временах. Такая гипотез а далеко не безобидна: попытки обобщения общей теор ии относительности в этом направлении сталкиваются с серьезными трудностями.

По-видимому, если такое обобщение вообще возможно, то оно будет связано с представлением о существовании дополнительных размерностей пространства, помимо тех трех измерений, которые мы воспринимаем в повседневном опыте.

К сожалению, сейчас не видно путей прямого экспериментального исследования темной энерги и в земных условиях. Это, конечно, не означает, что в будущем не может появиться новых блестящих идей в этом направлении, но сегодня надежды на прояснение природы темной энерги и (или, более широко, причины ускоренного расширения Вселенной) связаны исключительно с астрономическими наблюдениями и с получением новых, более точных космологических данных. Нам предстоит узнать в деталях, как именно расширялась Вселенная на относительно позднем этапе её эволюции, и это, надо надеяться, позволит сделать выбор между различными гипотез ами.

Речь идет о наблюдениях сверхновых типа 1а.

Изменение энерги и при изменении объема определяется давлением, ΔЕ = -p ΔV . При расширении Вселенной энерги я вакуума растет вместе с объемом (плотность энерги и постоянна), что возможно, только если давление вакуума отрицательно. Отметим, что противоположные знаки давления и энерги и вакуума прямо следуют из Лоренц-инвариантности.

7. Заключение

Как часто бывает в науке, впечатляющие успехи физики частиц и космологии поставили неожиданные и фундаментальные вопросы. Мы сегодня не знаем, что представляет собой основная часть материи во Вселенной. Мы можем только догадываться, какие явления происходят на сверхмалых расстояниях, и какие процессы происходили во Вселенной на самых ранних этапах её эволюции. Замечательно, что на многие из этих вопросов ответы будут найдены в обозримом будущем - в течение 10–15 лет, а может быть, и раньше. Наше время - это время кардинального изменения взгляда на природу, и главные открытия здесь еще впереди.

ОБСУЖДЕНИЕ


18.04.2005 09:32 | rykov

Мне лекция Валерия Анатольевича Рубакова чрезвычайно понравилась. Я впервые слышу лекцию с опорой не на теор ию, а на наблюдённые данные. Известно, что теор ий, объясняющих явления, может быть несколько и даже противоречащих между собой. Кроме того, приведенные данные укладываются в гипотез у о природе гравитации и антигравитации в форме зарядовой и магнито-массовой структуры "вакуума". Избыток заряда "вакуума" является источником Кулоновского притяжения между телами из вещества и одновременно источником сил отталкивания одноименного электричекого заряда. Это отталкивание наблюдается в виде расширения Вселенной - в начале быстрого в силу большой плотности заряда, сейчас - замедленное в силу наличия примерно 2000 Кулон/м^3. "Темная" материя в гипотез е существует в форме магнито-массового континуума как источника масс реальных частиц и потоков магнитной индукции.


18.04.2005 15:12 | grechishkin

18.04.2005 16:40 | Markab

Лекция удивила. Как раз большая проблема с наблюдательным материалом. Взяли с потолка с начала темную материю, для того чтобы объяснить недостаток наблюдаемой массы галактик, а затем, для того чтобы объяснить наблюдаемое расширение вселенной, ввели темную энерги ю. Свойства темной материи объяснили очень даже логично: в сильное взаимодействие не вступает (то есть не может объединяться в более тяжелые элементы), электрически нейтральны, с обычным веществом взаимодействует очень слабо(как нейтрино поэтому плохо обнаружима) и обладает очень большой массой покоя. Большая масса покоя вероятно понадобилась докладчику для того, чтобы объяснить почему эта частица не была обнаружена до сих пор. Просто нет пока таких ускорителей. А если бы были, то непременно бы нашли. Нужна скрытая масса - получите. Ситуация как с эфиром в старые времена.
Наблюдательный материал действительно свидетельствует о том, что в галактическом гало сосредоточена не регистрируемая телескопами материя. Вопрос "Что это может быть?" остается пока открытым, но зачем же объяснять проблему скрытой массы через семейство новых частиц??
Относительно темной энерги и. Расширение вселенной факт наблюдаемый пока не объясненный но и не новый. Для объяснения расширения вселенной автору требуется темная энерги я. Математически отталкивание материи ввел Эйнштейн ввиде лямбда-члена, теперь же физически мы объясняем лямбда член темной материей. Одно непонятное -через другое. Вот в философии Ньютона для объяснения устойчивости орбит планет требовался Бог, поскольку иначе в силу гравитации, планеты должны были бы упасть на Солнце. Здесь Богом назвали темную энерги ю.
Не менее интересным представляется и балланс энерги и в современной вселенной. Так на все вещество отводится менее 10%, на выдуманые докладчиком частицы приходится 25% энерги и, ну а все остальное - темная энерги я. Как посчитали: вселенная эвклидова -> скорость расширения известна->применяем ОТО= получаем общую энерги ю Вселенной.
Из того что получили, отняли энерги ю...


18.04.2005 16:43 | Markab

ПРОДОЛЖЕНИЕ
Из того что получили, отняли энерги ю наблюдаемого вещества, а оставшуюся энерги ю поделили между силой расталкивания (темная энерги я) и недостающей массой (темная материя).
Начнем с эвклидовости вселенной. Эвклидовость Вселенной необходимо доказать несколькими независимыми способами. Предложенный метод неубедителен тем, что момент прехода Вселенной плазма-газ можно оценить в лучшем случае со множителем 2 в ту или иную сторону. Поэтому будет ли эвклидова Вселенная если размер ячейки принять 150 или 600 тыс. световых лет? Скорее всего нет. А значит нельзя применять ОТО для оценки общей энерги и во Вселенной.


19.04.2005 19:58 | rykov

В любом исходе контр аргументов Марка, мы наблюдаем удивительное совпадение между "тёмной" материей и магнито-массовым континуумом, между "тёмной" энерги ей и зарядовой структурой "физического вакуума". Поэтому я рассматриваю новое слово в космологии как почти прямое подтверждение распространения света и гравитации в космосе. Это очень хорошее совпадение.


19.04.2005 23:10 | Alex1998

Ладно лапшу людям на уши вешать про "удивительные совпадения". Забыл уже, как тебя в ru.science носом тыкали? У тебя там не только с "темной" материей совпадений не придвидится, но и со школьным курсом физики.

Хотя кадр ты конечно по своей бесцеремонности редкий... И Малдасену уже пожурить успел, и Гинсбурга по плечу похлопать...


10.06.2005 15:15 | rykov

Это Лукьянов?
Почитайте вот это: "Скорость гравитации"
http://www.inauka.ru/blogs/artic le54362/print.html
Для Вашего самообразования. А вообще, в физике очень странная ситуация. По этому поводу:
1. Распространение света (ЭМВ) невозможно в пустоте, лишённой электрических зарядов. Физика утверждает обратное, противореча материальности Вселенной. Пожалуй, это главная прореха в физической теор ии.
2. Постулат постоянства скорости света для Вселенной приводит к следующему искажению материальности нашего мира: необходимость введения замедления времени для объяснения наблюдаемых явлений. Без этого введения изменений хода времени невозможна вообще любая интерпретация данных опыта.
3. Искривление пространства в качестве модели гравитации и инерции также приводит к отрицанию материальной основы гравитации. При этом нарушается всеобщее значение числа pi в физике, которое реализуется только в неискривлённом пространстве.

Вероятно, это главные заблуждения в физике. Все остальное может быть воспринято как издержки роста понимания в устройстве мира. Вся сложность ситуации идеализма в физике связана с тем, что результаты наблюдений и опытов "подтверждают" физические теор ии. Проблема заключается в способе интерпретации наблюдений и опытов, которая в случае ошибочности и истинности теор ии обязана быть разной. В очерках сделана попытка верной интерпретации в физике, противопоставив интерпретации с нематериалистических позиций. Поэтому вторым (достаточным) условием любой физической теор ии должна быть её материалистическая обоснованность. Например, все ссылки на возможность передачи физических взаимодействий или передачи так называемых физических полей в пустоте лишены материальной основы. Соответствующие разделы теор етической физики должны быть исправлены с учётом материальности мира.


20.04.2005 12:07 | Markab

По мимо уже сказанного, в рассуждениях автора о темной материи, доклад содержит еще одно "темное место".
1) Из результатов наблюдения, см. рис. 7 доклада, следует, что измеренная скорость вращения звезд с удалением от ядра галактики оказывается выше, вычисленной. На рис. 7 они обозначены "наблюдения" и "без темной материи" (К сожалению не приведен максимум кривой "наблюдения", виден ее ~логарифмический рост). Наблюдаемую "повышенную" скорость автор объясняет наличием темной материи в нашей галактике. На рис. 6(правый) приводится пример восстановления гравитационного поля по наблюдению микролинзирования рис. 6(левый). Полученное гравитационное поле представляет собой суммарное поле, куда вносит вклад и наблюдаемое вещество и темная материя. Из рис. 6(правый) следует, что темная материя распределена по галактике так же как и обычная - она сосредоточается вместе с видимым веществом: в ядре галактики, звездых скоплениях, звездах и темных облаках.
2) Из рис. 5 следует, что темной материи примерно в 5 раз больше обычного вещества. То есть именно она вносит определяющий вклад в гравитационное взаимодействие. Эта материя должна быть и в Солнце, и в Земле, и в Юпитере, и т.д.
3) В Солнечной системе скорость планет с удалением от Солнца не возрастает, а убывает. Более того, нет локального максимума в скоростях планет с удалением от Солнца. Почему же в Галактике по другому? Противоречие??
ЧТО ЭТО МОЖЕТ ОЗНАЧАТЬ?
А) Темной материи в интерпретации автора НЕ СУЩЕСТВУЕТ. Для того чтобы объяснить "повышенную" скорость вращения звезд в галактике надо искать обычное вещество, которое может быть скрыто в молекулярных облаках, черных дырах, остывших нейтронных звездах и белых карликах.
Б) Темная материя в интерпретации автора СУЩЕСТВУЕТ. Не замечаем ее, потому, что к ней привыкли. Кстати, хороший способ похудеть, лучше всякого гербалайфа: выдавите из себя темную материю и станьте в 5 раз легче!


21.04.2005 13:42 | Markab

Подведем итог рассуждения о темной материи. Интерпретация темной материи образом, как это предлагает докладчик неизбежно приводит к пересмотру всей звездной эволюции.
Итак, согласно утверждениям автора темная материя это: частица с массой 100-1000 масс покоя протона, не имеющая электрического заряда, участвующая в гравитационном взаимодействии, не участвующая в сильном взаимодействии. С обычным веществом реагирует слабо, примерно как нейтрино. Подчиняется некому закону сохранения, предотвращающий распад такой частицы.
Масса темной материи примерно в 5 раз больше массы обычного вещества. (По данным доклада). Темная материя сосредоточена в тех же центрах, что и обычное вещество - ядра галактик, звездные скопления, звезды, туманности и т.д. (По данным доклада).
АСТРОФИЗИЧЕСКИЕ ПОСЛЕДСТВИЯ (введения темной материи)
1)На звездах выполняется условия лучистого равновесия с гравитацией. Излучение выделяется в результате ядерных реакций вещества звезды. Темная материя, находящаяся в звезде гравитационно сжимает ее, но не принимает участие в ядерных реакциях. Поэтому гипотетическое введение темной материи в звезду при условии сохранения ее массы приводит к тому, что количество вещества, способного участвовать в ядерных реакциях уменьшается в несколько раз. А значит сокращается в несколько раз(!) время жизни звезды. Что не выполняется хотя бы на примере нашего Солнца, которое благополучно существует ~5 млрд. лет и еще столько же будет существовать.
2) В процессе эволюции доля темной материи на звезде растет, поскольку частицы с массой (100-1000 Мр) не будут покидать звезду ни звездным ветром, ни сбросом оболочки. Более того, ввиду своей массы темная материя будет сосредоточена в ядре звезды. Это значит, что в конце звездной эволюции, когда звезда превращается в белый карлик или нейтронную звезду, подавляющая часть ее массы должна состоять из темной материи! (Причем не известно какой статистике она (ТМ)подчиняется и какими свойствами обладает.) А это в свою очередь должно изменить предел...


21.04.2005 13:44 | Markab

А это в свою очередь должно изменить предел Чандрасекара на белые карлики и Опенгеймера-Волкова на нейтронные звезды. Однако экспериментально не наблюдается смещения по массе предела Чандрасекара белый карлик - нейтронная звезда.
Оба этих аргумента еще раз убеждают в том, что темной материи в интерпретации г-на Рубакова просто нет.


21.04.2005 22:18 | Algen

27.04.2005 10:10 | Markab

Процесс конденсации вещества зависит не от абсолютной скорости вещества (скорости вращения вокруг ядра галактики), а от относительной, т.е. скорости, с которой частицы темной материи движутся относительно обычной материи. Что касается абсолютной величины скорости 100-200 км/с, эта велечина не большая. Например, скорость движения вещества вокруг ядра в окрестности Солнца составляет порядка 250 км/с, что никак не мешает процессу звездообразования.


20.04.2005 00:33 | golos

Многоуважаемый господин Рубаков! С интересом прочёл Вашу лекцию, за которую весьма благодарен. Не буду вдаваться в детали, ибо дилетант.
Господин Рубаков. Меня занимает вопрос, на который не могу получить внятного ответа. Суть вот в чём. Допустим, есть некая масса, вокруг которой на расстоянии миллионов световых лет вращаются массы другие. Допустим гипотетический случай: массу, вокруг которой вращаются другие массы, в течении тысячи лет поглотила черная дыра. Грубо скажем, что причина притяжения вращающихся тел пропала/понятно, что это вовсе не так. Суть не в этом./ Но движущиеся с ускорением тела будут двигаться с прежними ускорениями ещё тысячи лет. До тех пор, пока к ним не придёт возмущение гравполя. Выходит, эти тысячи лет массы взаимодействовали имено с полем? И именно поле их ускоряло? Но если так, то по теор ии близкодействия неизбежно следует, что ускоряющиеся тела вначале взаимодействуют с гравполем, "отталкиваются" от него. Следовательно, поле обладает импульсом и, следовательно, массой. Которая автоматически равна массе ускоряемого полем тела. Но если так, то это означает, что во Вселенной кроме массы наблюдаемого вещества есть такая же точно скрытая масса гравитационного поля. Причем силы, приложенные к этому полю, приложены не к точке, а расплываются в бесконечности. Интуитивно чувствуется, что эта масса может быть причиной расширения пространства Вселенной, ибо явно взаимноотталкивается.
Не буду фантазировать. Мне просто хотелось бы знать Ваше мнение об этих рассуждениях, даже если они будут нелицеприятны. Я дилетант, по этой причине разгромная критика репутации моей никак не повредит. За отсутствием оной.
С уважением.
golos


20.04.2005 09:03 | rykov

Уважаемый Голос! Я тоже дилетант и не примите мой ответ Вам как замену уважаемого Валерия Анатольевича. Как мне кажется, если он и будет отвечать, то на все ремарки сразу. Мой ответ Вы сможите найти на страницах:
РАСПРОСТРАНЕНИЕ СВЕТА И ГРАВИТАЦИЯ В КОСМОСЕ
http://www.inauka.ru/blogs/artic le41392.html
и
Ключ к пониманию Вселенной NEW! 27/12/2004
http://www.worldspace.narod.ru/r u/index.html


21.04.2005 09:03 | rykov

21.04.2005 11:52 | golos

21.04.2005 22:16 | Algen

Начнем с того, что если центральную массу проглотит черная дыра, то с гравитационным полем на отдалении ничего не случится. Оно, каким было, таким и останется.

Тем не менее, ваши рассуждения верны. Действительно удаленные объекты взаимодействуют с гравитационным полем и пока до них не дойдут сигналы об изменениях в центре событий, они будут двигаться как раньше. В противном случае произошло бы нарушение причинности.

Вы делаете правильный вывод о том, что гравитационное поле обладает энерги ей и импульсом. Это действительно физическое поле. Однако вывод о том, что эта энерги я (масса) чему-то там "автоматически" равна, необоснован и неверен.

Вообще вопрос об энерги и гравитационного поля довольно запутанный. По нему у специалистов есть разные мнения. То есть о самом факте наличия энерги и никто не спорит, но не вполне ясно, как указать, где именно эта энерги я локализованы. Об этом довольно хорошо написано у Пенроуз а в книжке "Новый ум короля". Рекомендую почитать.я во Вселенной7.files/f_line.gif">

Уважаемый Algen! Продолжим с того, что черная дыра, поглотившая центральную массу, изменит характеристики вновь возникшей центральной массы. Так что гравитационное поле, на мой взгляд, претерпит, со временем, некоторые изменения. О взаимодействии удалённых объектов с гравполем. Я не имел в виду, что масса его автоматически равна всему звёздному веществу. Я полагал, что масса звёздного вещества автоматически входит в массу гравполя. Согласитесь, это несколько иной смысл . О локализации энерги и гравполя. На мой взгляд, говорить об этом более, чем странно. Энергия, вложенная звёздным веществом в гравполе, расплывается в бесконечности. Поскольку она, тем не менее, "поступает" от дискретных тел, то скорее всего испытывает взаимооталкивание, являсь одной из причин расширения Вселенной. Разумеется, это всего лишь гипотез а. Но если допустить, что это так, то взаимодействия этих масс/энерги й может быть описываемо геометрией Лобачевского. Интересно, закон взаимного всемирного отталкивания, аналогичный нашему закону всемирного тяготения, как может быть в ней записан?
Разумеется, я отношусь к этому утвердению как к гипотез е.
Благодарю за информацию о книге Пенроуз а. Поищу. Если у Вас есть информация, где и как её можно найти, буду весьма благодарен.


06.05.2005 22:16 | Alex1998

15.05.2005 10:50 | Mihail

Никакой темной материи и тем более темной энерги и в Природе не существует - скорее это темнота в мозгах, пытающихся с завидным упорством "пристегнуть" мироздание к существующим нелепым релятиви стским теор иям. Разумеется, Природа полна и многими другими видами неизвестных пока науке излучений, в том числе главного - гравитонного. Грвитонная материя заполняет всю Вселенную и составляет значительную долю ее массы, однако эта материя сама по себе не обладает гравитацией (но создает ее!). Никакой антигравитации во Вселенной не существует - Природе это не нужно. Понятие антигравитации - плод недомыслия.


23.05.2005 06:30 | kpuser

Обращаю внимание автора и читателей, что природа темной материи, представленная в статье "главной загадкой фундаментальной физики XXI века", легко выявляется в рамках неоклассической концепции физики, базирующейся на описании свободного движения незаряженных тел обобщённым уравнением Лоренца. В этом уравнении представлены две классических силы: ньютоновская сила инерции тела и обобщённая сила Лоренца, которая учитывает упругое взаимодействие тела с собственным физическим или силовым полем.
Решение уравнения указывает на магнитную природу тяготения и приводит к двум формам закона всемирного тяготения. Одна из них - традиционная ньютоновская - применима для локальных космических структур типа Солнечной системы, в которых гравитация обусловлена взаимным притяжением реальных или ВЕЩЕСТВЕННЫХ масс материи. Другая показывает, что в масштабных космических структурах типа галактик и их скоплений проявляются антигравитационные явления, обусловленные взаимным отталкиванием МНИМЫХ масс, в которых превалирует масса силовых полей или ТЁМНАЯ МАТЕРИЯ. Подробнее с этим можно ознакомиться на нашем сайте по адресу: http://www.livejournal.com/commu я во Вселенной7.files/elementy">

To Maxim Chicago
А не могли бы Вы, так сказать, "соответствовать": обосновать свой "приговор" соответствующими аргументами? Что конкретно в моей работе Вам представляется "антифизикой"? Или так Вы оцениваете обобщённое уравнение Лоренца, на котором в работе удалось построить практически законченное здание современной физики? Объяснитесь, пожалуйста.
К. Агафонов


08.06.2005 16:40 | Che
Авторские права сайта Fornit

Все, что мы видим вокруг себя (звезды и галактики) это не более 4-5% от всей массы во Вселенной!

Согласно космологическим теориям современности, наша Вселенная состоит всего из 5% обычной, так называемой барионной материи, которая образует все наблюдаемые объекты; 25% темной материи, регистрируемой благодаря гравитации; и темной энергии, составляющей целых 70% от общего объема.

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского.

В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Многие современные ученные убеждены, что исследования направленные на изучение темной энергии и материи, вероятно, помогут получить ответ на глобальный вопрос: что же ожидает нашу Вселенную в будущем?

Сгустки размером с галактику

Темная материя представляет собой субстанцию, состоящую, скорее всего, из новых, еще неизвестных в земных условиях частиц и обладающую свойствами присущими самому обыкновенному веществу. Например, она способна также как обычные вещества собираться в сгустки и участвовать в гравитационных взаимодействиях. Вот только размеры этих так называемых сгустков могут превышать целую галактику или даже скопление галактик.

Подходы и методы исследования частиц темной материи

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Природа темной материи и черных дыр

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени. В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается. Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной. Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума. Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную. Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

Физики любят красное словцо. В их среде с некоторых пор принято давать «ненаучные» названия вновь открытым сущностям. Взять хотя бы странный и очарованный кварки. Вот и темная энергия не синоним темных сил, а термин, придуманный для обозначения некоторых необычных свойств нашей Вселенной.

Открытие темной энергии было сделано астрономическими методами и стало для большинства физиков полной неожиданностью. Темная энергия, пожалуй, главная загадка современного естествознания. Вполне вероятно, что ее разгадка станет важнейшим событием физики XXI века, сравнимым по масштабу с крупнейшими открытиями недалекого прошлого, такими, как открытие феномена расширения Вселенной.

Не исключено даже, что произойдет настолько радикальное развитие теории, что оно встанет в один ряд с созданием общей теории относительности, открытием кривизны пространства-времени и связи этой кривизны с гравитационными силами. Мы сейчас находимся в начале пути, и разговор о темной энергии - это возможность заглянуть в «лабораторию» физиков в то время, когда их работа идет полным ходом.

Немного истории

То, что в нашей Вселенной «что-то не так», стало ясно космологам уже к началу 1990-х годов. Для пояснения полезно напомнить о законе расширения Вселенной. Удаленные друг от друга галактики разбегаются, причем чем дальше галактика, тем быстрее она удаляется от нас. Количественно темп расширения характеризуется параметром Хаббла. К началу 1990-х значение параметра Хаббла в современной Вселенной было довольно хорошо измерено: темп расширения Вселенной сегодня таков, что галактики, удаленные от Земли на расстояние 1 млрд. световых лет, убегают от нас со скоростью 24 тыс. км/с.

Отметим, что параметр Хаббла зависит от времени: в далеком прошлом Вселенная расширялась гораздо быстрее, чем сейчас, и, соответственно, параметр Хаббла был гораздо больше.

В современной теории гравитации - общей теории относительности - параметр Хаббла однозначно связан с двумя другими характеристиками Вселенной: во-первых, с суммарной плотностью энергии всех форм материи, вакуума и т. д., во-вторых, с кривизной трехмерного пространства. Наше трехмерное пространство, вообще говоря, не обязано быть евклидовым; его геометрия может, например, быть аналогична геометрии сферы; сумма углов треугольника может не равняться 180°. В таком случае «упругость» пространства с точки зрения расширения Вселенной играет ту же роль, что и плотность энергии.

К началу 1990-х годов с неплохой точностью была оценена и плотность энергии «нормальной» материи в современной Вселенной. «Нормальная» она в том смысле, что испытывает такие же гравитационные взаимодействия, что и обычное вещество. Дело, впрочем, осложнилось тем, что большая часть «нормальной» материи - это так называемая темная материя. Темная материя, по-видимому, состоит из новых, не открытых пока в земных экспериментах элементарных частиц, чрезвычайно слабо взаимодействующих с веществом (слабее нейтрино!), но на равных испытывающих гравитационное взаимодействие. Именно по эффекту гравитационного притяжения она и была обнаружена. Более того, измерения гравитационных сил в скоплениях галактик позволили определить массу темной материи в них, а в конечном итоге - в целом во Вселенной. Таким образом и была найдена полная плотность энергии «нормальной» материи (для нее справедлива знаменитая формула Е = mс 2).

И что же оказалось? Выяснилось, что «нормальной» материи явно не хватает для объяснения измеренного темпа расширения Вселенной. Причем сильно не хватает: «недостача» составляла около 2/3 (по современным оценкам - около 70%). Возможных объяснений этому факту было два: либо трехмерное пространство искривлено, и недостающий вклад в параметр Хаббла связан с его «упругостью», либо во Вселенной присутствует новая форма энергии, которую впоследствии и стали называть «темной энергией».

С теоретической точки зрения обе эти возможности - и неевклидовость пространства, и темная энергия - выглядели крайне неправдоподобными.

Начнем с кривизны трехмерного пространства. В процессе расширения Вселенной пространство разглаживается, его кривизна уменьшается. Если кривизна отличается от нуля сейчас, то в прошлом она была больше, чем сегодня. Однако плотность энергии (массы) материи убывает при расширении Вселенной еще быстрее. Это означает, что в прошлом относительный вклад кривизны в параметр Хаббла был очень мал, а главным - с большим запасом - был вклад материи. Для того чтобы сегодня расширение Вселенной на 70% обеспечивалось кривизной, необходимо «подогнать» значение радиуса кривизны пространства в прошлом с фантастической точностью - через секунду после Большого взрыва он должен был быть равен миллиарду радиусов наблюдаемой тогда части Вселенной, не больше и не меньше! Без такой подгонки кривизна сегодня была бы либо на много порядков больше, либо на много порядков меньше, чем необходимо для объяснения наблюдений.

Эта проблема была одним из главных соображений, приведших к представлению об инфляционной стадии эволюции Вселенной. Согласно инфляционной теории, предложенной Алексеем Старобинским и независимо Аланом Гутом и сформировавшейся благодаря работам Андрея Линде, Андреаса Албрехта и Пола Стейнхардта, Вселенная на самом раннем этапе своей эволюции прошла через стадию чрезвычайно быстрого, экспоненциального расширения (раздувания, инфляции). По окончании этой стадии Вселенная разогрелась до очень высокой температуры, и наступила эпоха горячего Большого взрыва.

Хотя инфляционная стадия длилась, скорее всего, малую долю секунды, за это время Вселенная растянулась на десятки или сотни порядков величины (или гораздо больше) и кривизна пространства упала практически до нулевого значения. Таким образом, инфляционная теория приводит к предсказанию о том, что пространство современной Вселенной с высочайшей степенью точности евклидово. Это, конечно, идет вразрез с той гипотезой, что Вселенная расширяется сегодня на 70% благодаря кривизне.

Действие темной энергии подобно космологической инфляции первых мгновений Вселенной, только совсем других масштабов - ничтожная плотность энергии, медленное ускорение. Этот малый масштаб - большая загадка, совершенно непонятно, как темная энергия может быть связана с известной нам физикой частиц и полей. К этой загадке мы еще вернемся.

В дилемме, что отвечает за недостающие 70% плотности Вселенной - темная энергия или кривизна, - последняя долгое время была более популярной. Переворот произошел в 1998–1999 годах, когда две группы из США, одна под руководством Адама Райсса и Брайана Шмидта, а другая - Сола Перлмуттера, сообщили о результатах наблюдений удаленных сверхновых типа Iа. Из этих наблюдений следовало, что наша Вселенная расширяется с ускорением. Такое свойство вполне согласуется с представлением о темной энергии, в то время как кривизна пространства к ускоренному расширению не приводит.

Несколько слов о сверхновых типа Iа. Это белые карлики, которые, подпитываясь веществом от звезды-компаньона, достигли так называемого чандрасекаровского предела, после чего потеряли устойчивость, взорвались и коллапсировали в нейтронные звезды. Предел Чандрасекара для всех белых карликов один, сами белые карлики похожи друг на друга, поэтому и взрывы в определенном смысле одинаковы. Иными словами, сверхновые типа Iа представляют собой «стандартные свечи»: зная абсолютную светимость и измеряя видимую яркость (поток энергии, приходящий на Землю), можно определить расстояние до каждой из них. Одновременно можно установить и скорость удаления от нас каждой из сверхновых (используя эффект Доплера).

Сверхновые - очень яркие объекты, их видно на огромных расстояниях. Иначе говоря, удаленные сверхновые, которые мы наблюдаем сейчас, взорвались давным-давно, и поэтому скорость их убегания определялась темпом расширения Вселенной тогда, в далеком прошлом. Тем самым наблюдения сверхновых типа Iа позволяют определить темп расширения на сравнительно ранних этапах эволюции Вселенной (8 млрд. лет назад и даже несколько раньше) и проследить зависимость этого темпа от времени. Именно это и дало возможность установить, что Вселенная расширяется с ускорением.

Окончательное доказательство того, что кривизна трехмерного пространства Вселенной мала, было получено путем изучения карты реликтового излучения.

В эпоху излучения реликтовых фотонов Вселенная не была в точности однородной. Имевшиеся тогда неоднородности были зародышами структур - первых звезд, галактик, скоплений галактик. В то время неоднородности плазмы представляли собой звуковые волны. Важно, что в ту эпоху во Вселенной имелся характерный масштаб расстояний. Звуковые волны ольшой длиной и, соответственно, большим периодом, еще не успели развиться к эпохе излучения реликтовых фотонов, а волны с «правильной» длиной как раз успели попасть в фазу максимальной амплитуды. Эта «правильная» длина волны представляет собой «стандартную линейку» эпохи излучения реликтовых фотонов; ее размер надежно вычисляется в теории горячего Большого взрыва и проявляется на карте реликтового излучения .

На рубеже XX–XXI веков в экспериментах BOOMERanG и MAXIMA впервые был измерен угол, под которым видна обсуждавшаяся только что «стандартная линейка». Ясно, что этот угол зависит от геометрии пространства: если сумма углов треугольника превышает 180°, то и этот угол больше. В результате было выяснено, что наше трехмерное пространство с хорошей степенью точности евклидово. Последующие измерения подтвердили этот вывод. С точки зрения расширения Вселенной существующие результаты означают, что кривизна пространства вносит пренебрежимо малый вклад (менее 1%) в параметр Хаббла. Темп расширения Вселенной сейчас на 70% обусловлен именно темной энергией.

Больше не знают о ней ничего

Какие же свойства темной энергии известны на настоящее время? Таких свойств немного, всего три. Но то, что известно, может по справедливости вызвать изумление.

Первое - это тот факт, что в отличие от «нормальной» материи темная энергия не скучивается, не собирается в объекты типа галактик или их скоплений - она «разлита» по Вселенной равномерно. Это утверждение, как и любое, основанное на наблюдениях или экспериментах, справедливо с определенной точностью. Однако из наблюдений следует, что отклонения от однородности, если они и есть, должны быть весьма малы по величине.

О втором свойстве мы уже говорили: темная энергия заставляет Вселенную расширяться с ускорением. Этим темная энергия тоже разительно отличается от нормальной материи, которая тормозит расширение. Два описанных свойства свидетельствуют о том, что темная энергия в определенном смысле испытывает антигравитацию, для нее имеется гравитационное отталкивание вместо гравитационного притяжения. Области с повышенной плотностью нормальной материи за счет гравитационного притяжения собирают вещество из окружающего пространства, сами эти области сжимаются и образуют плотные сгустки. Для антигравитирующей субстанции всё наоборот: области с повышенной плотностью (если они есть) растягиваются из-за гравитационного отталкивания, неоднородности разглаживаются и никаких сгустков не образуется.

Третье свойство темной энергии состоит в том, что ее плотность не зависит от времени. Тоже удивительно: Вселенная расширяется, объем растет, а плотность энергии остается постоянной. Кажется, что здесь есть противоречие с законом сохранения энергии. За последние 8 млрд. лет Вселенная расширилась вдвое. Область пространства, которая тогда имела, скажем, размер 1 м, сегодня имеет размер 2 м, ее объем увеличился в 8 раз, во столько же раз увеличилась энергия в этом объеме. Несохранение энергии налицо.

На самом деле рост энергии при расширении Вселенной не противоречит законам физики. Темная энергия устроена так, что расширяющееся пространство совершает над ней работу, что и приводит к увеличению энергии этой субстанции в расширяющемся объеме пространства. Правда, расширение пространства само обусловлено темной энергией, так что ситуация напоминает барона Мюнхгаузена, вытаскивающего себя за волосы из болота. И тем не менее противоречия нет: в космологическом контексте невозможно ввести понятие полной энергии, включающей в себя энергию самого гравитационного поля. Так что и закона сохранения энергии, запрещающего рост или убывание энергии какой-нибудь формы материи, тоже нет.

Утверждение о постоянстве плотности темной энергии тоже основано на астрономических наблюдениях, а потому тоже справедливо с определенной точностью. Чтобы охарактеризовать эту точность, укажем, что за последние 8 млрд. лет плотность темной энергии изменилась не более чем в 1,1 раза. Это мы сегодня можем сказать с уверенностью.

Отметим, что второе и третье свойство темной энергии - способность приводить к ускоренному расширению Вселенной и ее постоянство во времени (или, более общо, очень медленная зависимость от времени) - на самом деле тесно связаны между собой. Такая связь следует из уравнений общей теории относительности. В рамках этой теории ускоренное расширение Вселенной происходит именно тогда, когда плотность энергии в ней или совсем не меняется, или меняется весьма медленно. Таким образом, антигравитация темной энергии и ее сложные отношения с законом сохранения энергии - две стороны одной медали.

Этим надежные сведения о темной энергии по существу и исчерпываются. Дальше начинается область гипотез. Прежде, чем говорить о них, обсудим вкратце один общий вопрос.

Почему сейчас?

Если в современной Вселенной темная энергия дает наибольший вклад в полную плотность энергии, то в прошлом это было далеко не так. Скажем, 8 млрд. лет назад нормальная материя была в 8 раз более плотной, а плотность темной энергии была такой же (или почти такой же), как сейчас. Отсюда несложно заключить, что тогда соотношение между энергией покоя нормальной материи и темной энергией было в пользу первой: темная энергия составляла около 13%, а не 70%, как сегодня. Из-за того, что в то время главную роль играла нормальная материя, расширение Вселенной происходило с замедлением. Еще раньше влияние темной энергии на расширение было совсем слабым.

Итак, влияние темной энергии и вызванное им ускорение расширения Вселенной - явления по космологическим меркам совсем недавние: ускорение началось «всего» 6,5 млрд. лет назад. С другой стороны, поскольку плотность нормальной материи убывает со временем, а плотность темной энергии - нет, темная энергия вскоре (опять-таки по космологическим меркам) будет полностью доминировать. Значит, современный этап космологической эволюции - это переходный период, когда темная энергия уже играет заметную роль, но расширение Вселенной определяется не только ей, но и нормальной материей. Является ли эта выделенность нашего времени случайным совпадением или за ней стоит какое-то глубокое свойство нашей Вселенной? Этот вопрос - «почему сейчас?» - остается пока открытым.

Кандидаты

Если бы не было гравитации, абсолютное значение энергии не имело бы физического смысла. Во всех теориях, описывающих природу, за исключением теории гравитационных взаимодействий, смысл имеет лишь разность энергий тех или иных состояний. Так, говоря об энергии связи атома водорода, мы имеем в виду разность двух величин: суммарной энергии покоя свободных протона и электрона, с одной стороны, и энергии покоя атома - с другой. Именно эта разность энергий выделяется (передается рожденному фотону), когда электрон и протон соединяются в атом. Если бы не гравитационное взаимодействие, говорить об энергии вакуума было бы бессмысленно, ее просто не с чем было бы сравнивать.

Дело в том, что энергия вакуума, как и любая другая энергия, «весит», гравитирует. Вакуум - это состояние с наинизшей энергией (поэтому, кстати, энергию от него отобрать нельзя), однако эта энергия совершенно не обязана быть равной нулю; с теоретической точки зрения она может быть как положительной, так и отрицательной. Можно ли ее вычислить «из первых принципов» - большой вопрос. Но в любом случае энергия вакуума, если она положительна, имеет как раз те свойства, которыми должна обладать темная энергия: однородность в пространстве и постоянство во времени.

Как мы говорили выше, в общей теории относительности последнее свойство автоматически означает, что энергия вакуума приводит к ускоренному расширению Вселенной.

Подчеркнем, что однородность в пространстве и постоянство во времени - это точные, а не приближенные свойства вакуума. Плотность энергии вакуума - это мировая константа (по крайней мере, в той части Вселенной, которую мы наблюдаем). Надо сказать, что эту константу - космологическую постоянную, Λ-член - вводил в свои уравнения еще Эйнштейн. Он, правда, не отождествлял ее с энергией вакуума, но это - вопрос терминологии, по крайней мере, при современном понимании существа дела. Позже Эйнштейн от своей идеи отказался - возможно, напрасно.

Почему же представление о темной энергии как энергии вакуума не удовлетворяет многих физиков? В первую очередь это связано с несуразно малым значением плотности энергии вакуума, которое необходимо для согласия теории и наблюдений.

В вакууме всё время рождаются и умирают виртуальные частицы, в нем имеются конденсаты полей - вакуум похож скорее на сложную среду, чем на абсолютную пустоту. Это не просто домыслы: особенности вакуума находят свое проявление в свойствах элементарных частиц и их взаимодействий и в конечном итоге определяются, хотя и косвенно, из многочисленных экспериментов. Энергия вакуума, в принципе, должна была бы «знать» о том, как он устроен, какова его структура и каковы значения характеризующих его параметров (например, конденсатов полей).

Теперь представим себе ангела-теоретика, который изучил физику элементарных частиц, но ничего не слышал о нашей Вселенной. Попросим этого теоретика предсказать плотность энергии вакуума. Исходя из масштабов энергий, характерных для фундаментальных взаимодействий, и соответствующих масштабов длин, он сделает свою оценку - и ошибется в невообразимое число раз - на десятки порядков величины. Наш теоретик предсказал бы такую большую энергию вакуума и такой вызванный ей темп расширения Вселенной, что дома на соседней улице должны были бы разлетаться от нас со скоростями, близкими к скорости света!

Проблема энергии вакуума ставила в тупик физиков-теоретиков задолго до открытия темной энергии. Так, в 1920–1930-х годах эта проблема волновала Вольфганга Паули, который в 1933 году писал : «Эта энергия [вакуума; тогда использовали термин «энергия нулевой точки», Nullpunktsenergie] должна быть не наблюдаемой в принципе, поскольку она не излучается, не поглощается, не рассеивается... и поскольку, как очевидно из опыта, она не создает гравитационного поля». Почему так происходит? Одна из возможностей состоит в том, что энергия пустого пространства каким-то образом всё же изменяется со временем и в конце концов становится близкой к нулю. Конкретные теоретические модели, иллюстрирующие эту возможность, построить чрезвычайно трудно, но можно; еще труднее вписать их в космологический контекст.

Если темная энергия - это энергия вакуума, то попытаться понять, почему она имеет столь малую величину, можно, следуя совсем другой логике. Представим себе, что Вселенная чрезвычайно велика, что она во много раз больше, чем наблюдаемая нами часть. Допустим далее, что в разных весьма обширных частях Вселенной могут реализовываться самые разные вакуумные состояния с самой разной плотностью энергии. Такая возможность, к слову, теоретически не исключена; более того, именно так, судя по всему, обстоит дело в теории суперструн, особенно если Вселенная проходила инфляционную стадию. Области Вселенной, где плотность энергии вакуума слишком велика по абсолютной величине, выглядят совершенно непохоже на нашу область: там, где энергия вакуума велика и положительна, пространство расширяется настолько быстро, что звезды и галактики просто не успевают образоваться; в областях с большой отрицательной энергией вакуума расширение пространства быстро сменяется сжатием, и эти области коллапсируют задолго до образования звезд. В обоих случаях космологическая эволюция несовместима с существованием наблюдателей, подобных нам. И, наоборот, мы могли появиться только там, где плотность энергии вакуума очень близка к нулю, - мы там и появились.

Такой, как говорят, антропный взгляд на проблему энергии вакуума высказывался более 20 лет назад в работах Андрея Линде и Стивена Вайнберга. Сейчас он популярен среди заметной части физиков-теоретиков. Другая часть воспринимает его как способ уйти от проблемы. Наиболее взвешенный подход, наверное, состоит в том, чтобы не исключать антропного объяснения как возможного конечного ответа, но попытаться всё же найти альтернативное решение проблем энергии вакуума и темной энергии.

Альтернативой вакууму как носителю темной энергии может служить какое-то новое поле, «разлитое» во Вселенной. В этом варианте энергия нового поля и является темной энергией. Новым это поле должно быть потому, что присутствие всюду во Вселенной известных полей (например, электромагнитного) слишком сильно влияло бы на поведение вещества и приводило бы к эффектам, которые давно были бы обнаружены. Кроме того, известные поля таковы, что их энергия не обладает перечисленными выше свойствами темной энергии.

Гипотетическое новое поле должно характеризоваться энергетическим масштабом порядка 0,002 эВ. Хотя это очень малый масштаб с точки зрения известных взаимодействий, он не выглядит совершенно неправдоподобным. Действительно, мы уже знаем, что масштабы разных взаимодействий сильно различаются между собой. Так, упоминавшийся масштаб сильных взаимодействий (200 МэВ) в 10 19 раз меньше масштаба гравитационных сил. Такое гигантское различие, конечно, само по себе требует объяснения, но это отдельный вопрос. В любом случае существование в природе разных энергетических масштабов - это факт, и введение нового малого масштаба непреодолимым препятствием не выглядит.

Новое поле, вообще говоря, изменяется в процессе эволюции Вселенной. Изменяется и его плотность энергии. Чтобы это изменение было не слишком быстрым, кванты нового поля - новые частицы - должны иметь чрезвычайно малую массу; говорят, что это поле должно быть легким.

Наконец, новое поле - это новая сила (так же, как гравитационное поле соответствует гравитационным, а электромагнитное - электрическим и магнитным силам). Легкое поле с чрезвычайно малой массой - сила с большим радиусом действия, подобная гравитации. Чтобы не было противоречия с экспериментами по проверке общей теории относительности, взаимодействие этого поля с обычным веществом должно быть очень слабым, слабее гравитационного.

Все эти свойства не выглядят для теоретика привлекательными, но с ними можно смириться. Важно, что гипотеза о новом поле хотя бы в принципе допускает экспериментальную проверку - с помощью наблюдений можно выявить изменение плотности энергии поля со временем. Это однозначно отметет гипотезу о вакуумной природе темной энергии и, наоборот, послужит указанием на существование во Вселенной нового легкого поля. К тому же в перспективе можно надеяться обнаружить неоднородность распределения темной энергии в пространстве. Это стало бы окончательным доказательством того, что темная энергия - энергия нового поля, а не что-нибудь еще.

С другой стороны, сегодня не видно способов зарегистрировать новое легкое поле в лабораторных экспериментах, на ускорителях и т. д. Причина - чрезвычайно слабое взаимодействие этого поля с веществом. Впрочем, мы еще слишком мало знаем, и, как говорится, никогда не говори «никогда».

Физики обсуждают разные типы гипотетических легких полей, энергия которых могла бы выступать в качестве темной энергии. В наиболее простом с теоретической точки зрения варианте плотность энергии нового поля убывает со временем. Для поля такого типа употребляют термин «квинтэссенция». Не исключена, однако, и обратная возможность, когда плотность энергии растет со временем; поле такого типа называют «фантомом». Фантом был бы весьма экзотическим полем; ничего подобного до сих пор в природе не встречалось. Различие между квинтэссенцией и фантомом, как мы обсудим ниже, важно с точки зрения удаленного будущего Вселенной.

Наконец, еще одно возможное объяснение темной энергии состоит в том, что никакой темной энергии на самом деле нет. Если общая теория относительности неприменима на современных космологических масштабах длин и времен, то и в темной энергии нет необходимости.

Разумеется, при таком взгляде на темную энергию нельзя не учитывать тот факт, что общая теория относительности хорошо проверена на меньших масштабах расстояний. Поэтому нужно создать новую теорию гравитации, которая переходила бы в общую теорию относительности на этих расстояниях, но иначе описывала бы эволюцию Вселенной на сравнительно поздних, близких к нашей стадиях. Это трудная задача, особенно если учесть требование самосогласованности, внутренней непротиворечивости теории. Тем не менее такие попытки делаются, и некоторые из них выглядят довольно перспективными.

Одна из возможностей состоит в том, чтобы разрешить ньютоновской постоянной всемирного тяготения меняться в пространстве и во времени, подчиняясь определенным уравнениям. К сожалению, наиболее красивые версии теории, реализующие эту возможность, отвергнуты экспериментами по проверке общей теории относительности. Если же за красотой не гнаться, то модели, объясняющие ускоренное расширение Вселенной и согласующиеся со всем, что известно про гравитацию, построить на этом пути можно. Такие модели, как правило, предсказывают отклонения от общей теории относительности, которые хотя и малы, но в перспективе экспериментально обнаружимы.

Отметим еще идею о том, что наше пространство может иметь больше трех измерений. При этом дополнительные измерения на обычных расстояниях ничем себя не проявляют, а на космологических расстояниях в миллиарды световых лет силовые линии гравитационного поля могут «расползаться» в дополнительные измерения, отчего гравитация не будет больше описываться обычным законом Ньютона. Вполне удовлетворительной теории, объясняющей таким образом ускоренное расширение Вселенной, до сих пор не построено; в предложенных к настоящему времени моделях эта идея реализована лишь отчасти. Замечательно, тем не менее, что эти модели приводят к своим предсказаниям для эксперимента. Среди них - возможность изменения гравитационного закона Ньютона на малых расстояниях; малые, но обнаружимые поправки к общей теории относительности в Солнечной системе и т. д.

Итак, открытые недавно особенности расширения Вселенной поставили новый вопрос: вызваны ли они энергией вакуума, энергией нового легкого поля или новой гравитацией на сверхбольших расстояниях? Теоретическое изучение этих возможностей в самом разгаре, а ответ, как обычно в физике, в конечном итоге должны дать новые эксперименты.

Темная энергия и будущее Вселенной

С открытием темной энергии сильно изменились представления о том, каким может быть отдаленное будущее нашей Вселенной. До этого открытия вопрос о будущем однозначно связывался с вопросом о кривизне трехмерного пространства. Если бы, как многие раньше считали, кривизна пространства на 70% определяла современный темп расширения Вселенной, а темная энергия отсутствовала, то Вселенная расширялась бы неограниченно, постепенно замедляясь. Теперь же понятно, что будущее определяется свойствами темной энергии.

Поскольку мы эти свойства знаем сейчас плохо, предсказать будущее мы пока не можем. Можно только рассмотреть разные варианты. Про то, что происходит в теориях с новой гравитацией, сказать трудно, но другие сценарии есть возможность обсудить уже сейчас.

Если темная энергия постоянна во времени, как в случае энергии вакуума, то Вселенная будет всегда испытывать ускоренное расширение. Большинство галактик в конце концов удалится от нашей на громадное расстояние, и наша Галактика вместе с немногими соседями окажется островком в пустоте. Если темная энергия - квинтэссенция, то в далеком будущем ускоренное расширение может прекратиться и даже смениться сжатием. В последнем случае Вселенная вернется в состояние с горячей и плотной материей, произойдет «Большой взрыв наоборот», назад во времени.

Еще более драматическая судьба ожидает Вселенную, сели темная энергия - фантом, причем такой, что его плотность энергии возрастает неограниченно. Расширение Вселенной будет всё более и более быстрым, оно настолько ускорится, что галактики будут вырваны из скоплений, звезды из галактик, планеты из Солнечной системы. Дело дойдет до того, что электроны оторвутся от атомов, а атомные ядра разделятся на протоны и нейтроны. Произойдет, как говорят, Большой разрыв.

Такой сценарий, однако, представляется не очень вероятным. Скорее всего, плотность энергии фантома будет оставаться ограниченной. Но и тогда Вселенную может ожидать необычное будущее. Дело в том, что во многих теориях фантомное поведение - рост плотности энергии со временем - сопровождается неустойчивостями фантомного поля. В таком случае фантомное поле во Вселенной будет становиться сильно неоднородным, плотность его энергии в разных частях Вселенной будет разной, какие-то части будут быстро расширяться, а какие-то, возможно, испытают коллапс. Судьба нашей Галактики будет зависеть от того, в какую область она попадет.

Всё это, впрочем, относится к будущему, отдаленному даже по космологическим меркам. В ближайшие 20 млрд. лет Вселенная будет оставаться почти такой же, как сейчас. У нас есть время для того, чтобы разобраться в свойствах темной энергии и тем самым более определенно предсказать будущее - а может быть, и повлиять на него.

В 30-х годах ХХ в. швейцарец Ф. Цвикки наблюдал за одним из самых больших галактических скоплений в созвездии Волосы Вероники. Из наблюдений выяснилось, что видимая скопления гораздо меньше существующей. Эти данные подтвердились через сорок лет Верой Рубин. Стало понятно, что некая тёмная материя и наполняют основной массой и галактическое пространство, и любое другое.

Наличие тёмной материи начали предполагать исходя из некоторых наблюдении:

  • Скорости вращения не убывают от центра к краям. Убывание скорости должно происходить, если галактическая масса соответствует видимой.
  • Исследования спутников галактик и шаровых скоплений показывали, что вся масса галактики больше общей массы её звёзд и других составляющих
  • Двойные галактические системы и скопления обладали большей долей тёмной материи
  • В эллиптических галактиках звёздной массы не хватит, чтобы удерживать горячий газ

Из всех наблюдений выявились некоторые свойства таинственного вещества. Оно может взаимодействовать с обычным веществом. Тёмная материя в несколько раз плотнее барионного, и захватывает его частицы посредством гравитационных ям. Вследствие этого происходит свечение.

Вокруг нашего светила, на расстояниях до 13 тыс. св. лет, больших объёмов тёмной материи не выявлено, хотя, по расчётам, концентрация её должна быть порядка 0,5 кг на объём Земли.

Обсерватория «Планк» в 2013 году опубликовала данные о составе наблюдаемой Вселенной. Обычная (барионная) материя составляет 4,9%, тёмная – 26,8%, а тёмная энергия – 68,3%. Из этого очевидно, что тёмная материя и тёмная энергия - основа нашей Вселенной.

Что входит в тёмную материю (теории)

  • Барионная тёмная материя. Вполне логично допущение, что эта материя обычная, но плохо взаимодействующая электромагнитным образом. Поэтому обнаружить её не удаётся. Состав этого вещества может быть таким: звёзды-карлики, тёмные гало, нейтронные звёзды, чёрные дыры. Возможно присутствие звёзд кварковых и преонных, но они имеют статус объектов гипотетических. Такой вариант объяснения тёмной материи следует из космологии Большого взрыва. Исходя из этого, получается, что концентрация лёгких элементов должна быть резко отличной от наблюдаемой.
  • Небарионная тёмная материя. Предполагаемых объектов такого вещества достаточно. Но, конечно, всё это – теоретические модели.
  • Лёгкие нейтрино. Эти частицы реально существуют, и этот факт доказан. Считается, что их число во Вселенной аналогично числу фотонов. Хотя они и обладают очень малой массой, но общее число вполне может влиять на динамику пространства. Их масса в диапазоне 10 -2 – 10 -3 эВ. После производства некоторых экспериментов выяснилось, что лёгкие нейтрино не могут быть доминирующей частью тёмной материи.
  • Тяжёлые нейтрино. Эти нейтрино названы стерильными за неспособность слабого взаимодействия. Изученные свойства этих частиц таковы, что они вполне способны составить значительную часть тёмной материи. Параметры их масс - 10 -1 – 10 -4 эВ.
  • Аксионы. Такой тип частиц относится к гипотетическим нейтральным. Они введены в квантовую хромодинамику для решения некоторых проблем. Возможно, что они составляют существенную часть тёмной материи, несмотря на небольшую массу - 10 -5 эВ.
  • Суперсимметричные частицы. Теоретически существует одна такая частица - LSP. Она стабильная, и не участвует в электромагнитных и сильных взаимодействиях. Ею может быть гравитино, фотино, хиггсино и некоторые другие.
  • Космионы. Такие частицы ввели в физику, чтобы разрешить проблемы солнечных нейтрино. Но, после разрешения некоторых теорий, эти частицы, вероятно, исключат из числа претендентов, составляющих тёмную материю.
  • Дефекты пространства-времени. В вакуумном поле Вселенной могли происходить энергетические скачки. Результатом этого могла стать различная выстроенность скалярного поля. При взаимодействии областей, имеющих различную ориентацию, образовывались дефекты разных конфигураций. Объекты, полученные при этом, наделены большой массой. Они вполне могли бы стать доминирующей составляющей тёмной материи. Но пока такие частицы не обнаружены.

Классификация

Начальные стадии развития Вселенной характерны термодинамическим равновесием между частицами тёмной материи и космической плазмы. В какой-то момент началось снижение температуры, из-за чего изменились параметры пролёта частиц в плазме. Все взаимодействия с барионными частицами прекратились. Исходя из значений температуры, при которых это случилось, тёмная материя разделяется на три типа:

  1. Горячая. Такой параметр тёмной материи получился из-за многократного превышения энергии частиц над их массой, случившегося в точке выхода из равновесия.
  2. Холодная. Это частицы, вылетевшие из плазмы в нерелятивистском состоянии, то есть, не имеющие околосветовых скоростей. На роль таких частиц претендует класс вимпов – это массивные, но слабо взаимодействующие частицы. Они тоже пока существуют только в умах учёных. Они имеют приличную массу – больше десятков ГэВ – и остаточную концентрацию, которая способна сбалансировать энергии современной Вселенной. Сила их взаимодействия с барионным веществом позволяет надеяться на обнаружение их в прямом виде. Из теоретических разработок следует, что тёмная материяв любой галактике должна особенно концентрироваться в её центре. Но астрономические наблюдения опровергают это, показывая, что она собирается в гало вокруг галактик и наполняет межгалактические пустоты.
  3. Тёплая. Такой тип материи составляют частицы, имеющие массу, не меньше 1 эВ. На выходе из равновесного состояния такие частицы были релятивистские. Они могли образоваться во время перехода из одной стадии расширения Вселенной в другую. Возможными кандидатами на роль такого типа материи стали нейтрино и LSP-гравитино.

Изучение тёмной материи

Пока известно о трёх методах, позволяющих производить прямые астрономические наблюдения.

  1. Динамический. Изучаются радиальные скорости галактик в их скоплениях при помощи современных приборов.
  2. Газодинамический. Исследуется рентгеновское излучение горячих газов скоплений.
  3. Расчёт слабого гравитационного линзирования . Для этого метода необходимы точные изображения очень удалённых крупнейших скоплений галактик.

Фактическое обнаружение частиц

Все частицы тёмной материи не имеют электрического заряда. Это является главной трудностью в их поиске, существующем в двух вариантах.

  1. Прямой. Используя наземную аппаратуру, проводятся изучения следствий, вытекающих из взаимодействия тёмных частиц с электронами и ядрами атомов.
  2. Косвенный. Отыскиваются возможные потоки вторичных частиц, возникших в результате различных действий, например аннигиляции материи.

Всё усложняющиеся наблюдения учёных за нашим миром, позволяют сделать вывод, что большая часть его нам неведома. 95% всего наполнения Вселенной – интересная загадка, которую ещё предстоит решить.

Десятилетиями ученые ломают головы над тем фактом, что наша Вселенная расширяется. С логической точки зрения гравитация должна притягивать галактики друг к другу, однако наблюдения 1990-х годов показали, что Вселенная не просто расширяется, она расширяется с ускоряющей тенденцией, и виной тому является так называемая темная энергия.

Темная энергия (не путать с темной материей) – это гипотетическая сила, на которую приходится до 68,3 процента всей энергии в наблюдаемой Вселенной. И ученые считают, что эта энергия отталкивает галактики друг от друга. Тем не менее, несмотря на множество непрямых доказательств ее существования, никто так до сих пор и не смог напрямую определить наличие темной энергии или хотя бы адекватно объяснить, откуда она взялась.

Однако согласно новой гипотезе, ответ на этот вопрос лежал у нас в буквальном смысле перед носом. Согласно этой гипотезе, темная энергия – это абсолютно обыденная вещь, если рассматривать ее с точки зрения одного из фундаментальных законов Вселенной, о котором мы часто забываем, когда рассматриваем этот вопрос. Этим фундаментальным законом является закон сохранения энергии. О нем рассказывают еще в средней школе. Если простыми словами, гласит он следующее: энергию нельзя просто так создать или разрушить, она не может просто так исчезнуть. Единственное, что она может – это перетечь из одного состояния в другое или перейти от одного тела к другому. На этом законе держится большая часть нашей фундаментальной физики.

Результаты нового исследования, проведенного группой физиков из разных институтов, говорят о том, что если в рамках самых ранних дней появления Вселенной имела место даже едва заметная утрата энергии, то это могло бы объяснить природу темной энергии, о которой сегодня говорят многие ученые. Авторы исследования добавляют, что, вполне возможно, эта утечка хоть и нарушала фундаментальный закон, но нарушала его настолько незначительно, что в итоге этого никто бы и не заметил.

Гипотеза весьма дерзкая, следует заметить. Но здесь же интересно понять, что именно привело исследователей к такой гипотезе. Для того чтобы разобраться в вопросе темной энергии и постараться объяснить ее, необходимо вернуться в 1917 год, год, когда Эйнштейн пытался понять, почему Вселенная статичная и не имеет тенденцию сужаться или расширяться. На тот момент эта теория была весьма популярной.

Чтобы объяснить отсутствие гравитационной стяжки, Эйнштейн предположил, что во Вселенной должно иметься что-то, что может создавать в общем вселенском масштабе сопротивление гравитации. Так появилась космологическая постоянная. Однако от этой идеи в 1929 году он отказался, когда астроном Эдвин Хаббл впервые увидел признаки расширяющейся Вселенной, которые он отметил в своих расчетах. В начале 90-х годов прошлого века ученые доказали, что Вселенная расширяется с ускорением, и постоянная Эйнштейна стала вновь актуальной. Астрофизики пришли к мнению, что этой постоянной, о которой Эйнштейн говорил в своих работах несколько десятилетий назад, на самом деле всегда являлась та вещь, которую сегодня мы называем темной энергией.

Так что же это такое, темная энергия? В общем понимании это космологическая постоянная, возникающая и равномерно заполняющая пространство Вселенной. Из квантовой механики нам известно, что на самом деле пустое пространство никогда не пусто – оно заполнено квантовыми частицами и энергией, которая появляется под воздействием возникновения и исчезновения этих частиц. И некоторые из этих частиц могут обладать репульсивной силой – той самой темной энергией.

Пожалуй, единственный самый спорный момент заключается в том, что предсказанный объем появляющейся темной энергии в рамках этого процесса должен быть больше, чем ныне выдвигаемый с учетом наблюдения расширения Вселенной показатель – до 120 порядков больше, если точнее. Это может говорить о том, что мы либо неправильно измеряем этот объем, либо мы совсем не понимаем, откуда именно берет свое начало темная энергия.

Новое исследование предполагает, что последний вариант наиболее вероятен, и по этому случаю выдвигается новая гипотеза. А что, если на раннем этапе своего появления Вселенная испытывала некоторую утечку энергии и эта потеря задала темп возникновения темной энергии?

«В нашей модели темная энергия представлена тем, что способно указать на тот объем энергии и импульса, которые были утрачены за всю историю Вселенной», - говорит один из исследователей Алехандро Перез.

Основной для этой новой гипотезы является альтернативная модель общей теории относительности, к которой Эйнштейн пришел в 1910-х. Она носит название модели унимодулярной гравитации. Согласно ей, энергия совсем необязательно должна сохраняться. При этом исследователи говорят, что при применении модели унимодулярной гравитации в вычислениях значение космологической постоянной идеально соотносится с теми наблюдениями, согласно которым наша Вселенная расширяется с ускорением.

Важно также отметить, что эта модель необязательно сильно противоречит нашему нынешнему пониманию Вселенной. Хотя исчезновение энергии в ранней Вселенной скажется на изменении значений объемов темной энергии, ни на что другое оно влиять не будет, или по крайней мере это не будет заметно в наших современных экспериментах.

«Энергия вещества, составляющего материю, может передаваться гравитационному полю, и эта «потеря энергии» будет выступать в роли космологической постоянной - она не будет разбавляться позже с расширением Вселенной», - говорит Тибо Жоссе, еще один член исследовательской группы.

«С учетом этого, потеря или создание энергии в далеком прошлом может иметь серьезные последствия сегодня и при этом на совершенно ином уровне и в более крупных больших масштабах».

Здесь, однако, возникает вопрос: если исчезновение энергии не несет никаких эффектов на Вселенную, кроме как изменяет значение самой темной энергии, то каким образом можно проверить правильность или неправильность этой гипотезы? В этом и заключается основная проблема.

«Наше предложение носит весьма общий характер, и любое изменение закона сохранения энергии, вероятнее всего, внесет свой вклад в эффективность космологической постоянной. Например, это может установить новые ограничения на феноменологические модели, стоящие за пределами квантовой механики», - говорит Жоссе.

«С другой стороны, прямые доказательства того, что темная энергия подпитывается от изменяющей свое состояние обычной энергии, кажутся за гранью реальности, так как у нас уже есть значение лямбда-члена (она же – космологическая постоянная), и, кроме того, мы ограничены лишь последним временем ее (темной энергии) эволюции».

В общем и целом данная гипотеза представляется тем, чем она пока и есть гипотезой, которая еще не проходила проверки. Однако физики говорят, что хотят более детально ее исследовать на предмет вероятности в будущем.

«Ни о какой определенности речи не идет. Но эта новая идея представляется как минимум интересной и поэтому заслуживает внимания», - говорит Ли Смолин, физик-теоретик из канадского Института теоретической физики в Ватерлоо, не принимавший участия в этом исследовании.

Включайся в дискуссию
Читайте также
Маточные кольца при выпадении матки – альтернатива резекции органа
Необычные идеи для встречи нового года
Тематическое занятие в старшей группе «1 сентября — День знаний